Harinvnukala's picture
Upload app.py
3a295f2 verified
import cv2
from ultralytics import YOLO, solutions
import torch
import numpy as np
from collections import defaultdict
import gradio as gr
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Device:", device)
# Load MiDaS model for depth estimation
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms").small_transform
# Load YOLO model
model = YOLO('yolov8x.pt')
names = model.model.names
model.to(device)
pixels_per_meter = 300
unattended_threshold = 2.0 # meters
dist_obj = solutions.DistanceCalculation(names=names, view_img=False, pixels_per_meter=pixels_per_meter)
# Set model parameters
model.overrides['conf'] = 0.5 # NMS confidence threshold
model.overrides['iou'] = 0.5 # NMS IoU threshold
model.overrides['agnostic_nms'] = True # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# Store scores for each person-luggage pair using tracker ID
ownership_scores = defaultdict(lambda: defaultdict(int))
def calculate_distance(depth_map, point1, point2):
dist_2d_m, dist_2d_mm = dist_obj.calculate_distance(point1, point2)
z1 = depth_map[int(point1[1]), int(point1[0])] / pixels_per_meter
z2 = depth_map[int(point2[1]), int(point2[0])] / pixels_per_meter
depth_diff = np.abs(z1 - z2)
distance = np.sqrt(dist_2d_m ** 2 + depth_diff ** 2)
return distance
def process_video(video_source):
cap = cv2.VideoCapture(video_source)
if not cap.isOpened():
print("Error: Could not open video.")
return
owners = {} # Store assigned owners for luggage using tracker ID
abandoned_luggages = set() # Store abandoned luggage using tracker ID
frame_count = 0
output_frames = [] # Store the processed frames to return as video
while cap.isOpened():
ret, frame = cap.read()
frame_count += 1
if not ret:
break
if frame_count % 10 != 0:
continue
results = model.track(frame, persist=True, classes=[0, 28, 24, 26], show=False)
frame_ = results[0].plot()
# MiDaS depth estimation
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
input_batch = midas_transforms(img).to(device)
with torch.no_grad():
prediction = midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
depth_map = prediction.cpu().numpy()
persons = []
luggages = []
num_boxes = len(results[0].boxes)
for i in range(num_boxes):
box = results[0].boxes[i]
centroid = get_centroid(box)
track_id = box.id
if box.cls == 0:
persons.append((track_id, centroid))
elif box.cls in [24, 28, 26]:
luggages.append((track_id, centroid))
for person_id, person_centroid in persons:
for luggage_id, luggage_centroid in luggages:
distance_m = calculate_distance(depth_map, person_centroid, luggage_centroid)
if distance_m <= unattended_threshold and luggage_id not in abandoned_luggages:
ownership_scores[luggage_id][person_id] += 1
for luggage_id, luggage_centroid in luggages:
person_in_range = any(
calculate_distance(depth_map, person_centroid, luggage_centroid) <= unattended_threshold
for person_id, person_centroid in persons
)
if not person_in_range and luggage_id not in abandoned_luggages:
abandoned_luggages.add(luggage_id)
# Visualization
for box in results[0].boxes:
xyxy = box.xyxy[0].cpu().numpy().astype(int)
cv2.rectangle(frame_, (xyxy[0], xyxy[1]), (xyxy[2], xyxy[3]), (0, 255, 0), 2)
centroid = get_centroid(box)
cv2.circle(frame_, (int(centroid[0]), int(centroid[1])), 5, (0, 255, 0), -1)
output_frames.append(frame_)
cap.release()
cv2.destroyAllWindows()
return output_frames
def get_centroid(box):
return dist_obj.calculate_centroid(box.xyxy[0].cpu().numpy().astype(int))
def video_interface(video):
processed_frames = process_video(video)
return processed_frames[0] if processed_frames else None
# Create a Gradio interface
interface = gr.Interface(fn=video_interface, inputs="video", outputs="video", title="Abandoned Object Detection")
if __name__ == "__main__":
interface.launch()