Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
import openai | |
# Set your OpenAI API key | |
openai.api_key = "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" | |
# OpenAI model to use | |
OPENAI_MODEL = "gpt-4o" # Replace with the model you want to display | |
# Load the image classification pipeline | |
def load_image_classification_pipeline(): | |
return pipeline("image-classification", model="Shresthadev403/food-image-classification") | |
pipe_classification = load_image_classification_pipeline() | |
# Function to generate ingredients using OpenAI | |
def get_ingredients_openai(food_name): | |
prompt = f"List the main ingredients typically used to prepare {food_name}:" | |
response = openai.Completion.create( | |
engine=OPENAI_MODEL, | |
prompt=prompt, | |
max_tokens=50 | |
) | |
return response['choices'][0]['text'].strip() | |
# Streamlit app | |
st.title("Food Image Recognition with Ingredients") | |
# Display OpenAI model being used | |
st.sidebar.title("Model Information") | |
st.sidebar.write(f"**OpenAI Model Used**: {OPENAI_MODEL}") | |
# Upload image | |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
st.write("Classifying...") | |
# Make predictions | |
predictions = pipe_classification(image) | |
# Display only the top prediction | |
top_food = predictions[0]['label'] | |
st.header(f"Food: {top_food}") | |
# Generate and display ingredients for the top prediction | |
st.subheader("Ingredients") | |
try: | |
ingredients = get_ingredients_openai(top_food) | |
st.write(ingredients) | |
except Exception as e: | |
st.write("Could not generate ingredients. Please try again later.") |