File size: 12,421 Bytes
504169f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d01430
 
 
504169f
 
4d01430
504169f
4d01430
 
504169f
4d01430
 
 
 
504169f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d01430
 
 
504169f
4d01430
504169f
 
4d01430
504169f
4d01430
504169f
 
 
 
 
 
 
 
 
4d01430
 
 
 
504169f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d01430
 
 
 
 
504169f
 
4d01430
 
 
 
 
504169f
 
 
 
 
4d01430
504169f
 
4d01430
 
504169f
4d01430
 
 
 
 
504169f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d01430
504169f
 
 
 
 
4d01430
504169f
4d01430
 
504169f
 
 
 
 
 
 
 
 
4d01430
504169f
4d01430
 
504169f
4d01430
 
504169f
 
4d01430
 
504169f
 
 
 
 
 
 
 
 
 
 
 
 
4d01430
 
504169f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d01430
504169f
4d01430
504169f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# ===== CRITICAL: Import spaces FIRST before any CUDA operations =====
try:
    import spaces
    HF_SPACES = True
except ImportError:
    # If running locally, create a dummy decorator
    def spaces_gpu_decorator(duration=60):
        def decorator(func):
            return func
        return decorator
    spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
    HF_SPACES = False
    print("Warning: Running without Hugging Face Spaces GPU allocation")

# ===== Now import other libraries =====
import random
import os
import uuid
import re
import time
from datetime import datetime

import gradio as gr
import numpy as np
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# ===== OpenAI ์„ค์ • =====
from openai import OpenAI

# Add error handling for API key
try:
    client = OpenAI(api_key=os.getenv("LLM_API"))
except Exception as e:
    print(f"Warning: OpenAI client initialization failed: {e}")
    client = None

# ===== ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ•์šฉ ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹ =====
STYLE_PRESETS = {
    "None": "",
    "Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
    "Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
    "Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
    "Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
}

# ===== ์ €์žฅ ํด๋” =====
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

# ===== ๋””๋ฐ”์ด์Šค & ๋ชจ๋ธ ๋กœ๋“œ =====
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/kim-korea"

# Add error handling for model loading
try:
    pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
    pipeline.load_lora_weights(adapter_id)
    pipeline = pipeline.to(device)
    print("Model loaded successfully")
except Exception as e:
    print(f"Error loading model: {e}")
    pipeline = None

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# ===== ํ•œ๊ธ€ ์—ฌ๋ถ€ ํŒ๋ณ„ =====
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")

def is_korean(text: str) -> bool:
    return bool(HANGUL_RE.search(text))

# ===== ๋ฒˆ์—ญ & ์ฆ๊ฐ• ํ•จ์ˆ˜ =====

def openai_translate(text: str, retries: int = 3) -> str:
    """ํ•œ๊ธ€์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ (OpenAI GPT-4o-mini ์‚ฌ์šฉ). ์˜์–ด ์ž…๋ ฅ์ด๋ฉด ๊ทธ๋Œ€๋กœ ๋ฐ˜ํ™˜."""
    if not is_korean(text):
        return text
    
    if client is None:
        print("Warning: OpenAI client not available, returning original text")
        return text

    for attempt in range(retries):
        try:
            res = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {
                        "role": "system",
                        "content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
                    },
                    {"role": "user", "content": text}
                ],
                temperature=0.3,
                max_tokens=256,
            )
            return res.choices[0].message.content.strip()
        except Exception as e:
            print(f"[translate] attempt {attempt + 1} failed: {e}")
            time.sleep(2)
    return text  # ๋ฒˆ์—ญ ์‹คํŒจ ์‹œ ์›๋ฌธ ๊ทธ๋Œ€๋กœ

def prepare_prompt(user_prompt: str, style_key: str) -> str:
    """ํ•œ๊ธ€์ด๋ฉด ๋ฒˆ์—ญํ•˜๊ณ , ์„ ํƒํ•œ ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹์„ ๋ถ™์—ฌ์„œ ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋งŒ๋“ ๋‹ค."""
    prompt_en = openai_translate(user_prompt)
    style_suffix = STYLE_PRESETS.get(style_key, "")
    if style_suffix:
        final_prompt = f"{prompt_en}, {style_suffix}"
    else:
        final_prompt = prompt_en
    return final_prompt

# ===== ์ด๋ฏธ์ง€ ์ €์žฅ =====

def save_generated_image(image: Image.Image, prompt: str) -> str:
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    image.save(filepath)

    # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ €์žฅ
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    return filepath

# ===== Diffusion ํ˜ธ์ถœ =====

def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
    if pipeline is None:
        raise ValueError("Model pipeline not loaded")
    
    generator = torch.Generator(device=device).manual_seed(int(seed))
    result = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    return result

# ===== Gradio inference ๋ž˜ํผ =====

@spaces.GPU(duration=60)
def generate_image(
    user_prompt: str,
    style_key: str,
    seed: int = 42,
    randomize_seed: bool = True,
    width: int = 1024,
    height: int = 768,
    guidance_scale: float = 3.5,
    num_inference_steps: int = 30,
    lora_scale: float = 1.0,
    progress=None,
):
    try:
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)

        # 1) ๋ฒˆ์—ญ + ์ฆ๊ฐ•
        final_prompt = prepare_prompt(user_prompt, style_key)
        print(f"Final prompt: {final_prompt}")

        # 2) ํŒŒ์ดํ”„๋ผ์ธ ํ˜ธ์ถœ
        image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)

        # 3) ์ €์žฅ
        save_generated_image(image, final_prompt)

        return image, seed
    
    except Exception as e:
        print(f"Error generating image: {e}")
        # Return a placeholder or error message
        error_image = Image.new('RGB', (width, height), color='red')
        return error_image, seed

# ===== ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ (ํ•œ๊ตญ์–ด/์˜์–ด ํ˜ผ์šฉ ํ—ˆ์šฉ) =====

examples = [
    "Mr. KIM์ด ๋‘ ์†์œผ๋กœ 'Fighting!' ํ˜„์ˆ˜๋ง‰์„ ๋“ค๊ณ  ์žˆ๋Š” ๋ชจ์Šต, ์• ๊ตญ์‹ฌ๊ณผ ๊ตญ๊ฐ€ ๋ฐœ์ „์— ๋Œ€ํ•œ ์˜์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",   
    "Mr. KIM์ด ์–‘ํŒ”์„ ๋“ค์–ด ์˜ฌ๋ฆฌ๋ฉฐ ์Šน๋ฆฌ์˜ ํ‘œ์ •์œผ๋กœ ํ™˜ํ˜ธํ•˜๋Š” ๋ชจ์Šต, ์Šน๋ฆฌ์™€ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ํฌ๋ง์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
    "Mr. KIM์ด ์šด๋™๋ณต์„ ์ž…๊ณ  ๊ณต์›์—์„œ ์กฐ๊น…ํ•˜๋Š” ๋ชจ์Šต, ๊ฑด๊ฐ•ํ•œ ์ƒํ™œ์Šต๊ด€๊ณผ ํ™œ๊ธฐ์ฐฌ ๋ฆฌ๋”์‹ญ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",  
    "Mr. KIM์ด ๋ถ๋น„๋Š” ๊ฑฐ๋ฆฌ์—์„œ ์—ฌ์„ฑ ์‹œ๋ฏผ๋“ค๊ณผ ๋”ฐ๋œปํ•˜๊ฒŒ ์•…์ˆ˜ํ•˜๋Š” ๋ชจ์Šต, ์—ฌ์„ฑ ์œ ๊ถŒ์ž๋“ค์— ๋Œ€ํ•œ ์ง„์ •ํ•œ ๊ด€์‹ฌ๊ณผ ์†Œํ†ต์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
    "Mr. KIM์ด ์„ ๊ฑฐ ์œ ์„ธ์žฅ์—์„œ ์ง€ํ‰์„ ์„ ํ–ฅํ•ด ์†๊ฐ€๋ฝ์œผ๋กœ ๊ฐ€๋ฆฌํ‚ค๋ฉฐ ์˜๊ฐ์„ ์ฃผ๋Š” ์ œ์Šค์ฒ˜๋ฅผ ์ทจํ•˜๊ณ  ์žˆ๊ณ , ์—ฌ์„ฑ๋“ค๊ณผ ์•„์ด๋“ค์ด ๋ฐ•์ˆ˜๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.",
    "Mr. KIM์ด ์ง€์—ญ ํ–‰์‚ฌ์— ์ฐธ์—ฌํ•˜์—ฌ ์—ด์ •์ ์œผ๋กœ ์‘์›ํ•˜๋Š” ์—ฌ์„ฑ ์ง€์ง€์ž๋“ค์—๊ฒŒ ๋‘˜๋Ÿฌ์‹ธ์—ฌ ์žˆ๋Š” ๋ชจ์Šต.",
    "Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers.",
    "Mr. KIM walking through a university campus, discussing education policies with female students and professors.",    
    "Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression.",
    "Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
    "Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute.",
]

# ===== ์ปค์Šคํ…€ CSS (๋ถ‰์€ ํ†ค ์œ ์ง€) =====
custom_css = """
:root {
    --color-primary: #8F1A3A;
    --color-secondary: #FF4B4B;
    --background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
}
footer {visibility: hidden;}
.gradio-container {background: var(--background-fill-primary);} 
.title {color: var(--color-primary)!important; font-size:3rem!important; font-weight:700!important; text-align:center; margin:1rem 0; font-family:'Playfair Display',serif;}
.subtitle {color:#4A5568!important; font-size:1.2rem!important; text-align:center; margin-bottom:1.5rem; font-style:italic;}
.collection-link {text-align:center; margin-bottom:2rem; font-size:1.1rem;}
.collection-link a {color:var(--color-primary); text-decoration:underline; transition:color .3s ease;}
.collection-link a:hover {color:var(--color-secondary);} 
.model-description{background:rgba(255,255,255,.8); border-radius:12px; padding:24px; margin:20px 0; box-shadow:0 4px 12px rgba(0,0,0,.05); border-left:5px solid var(--color-primary);} 
button.primary{background:var(--color-primary)!important; color:#fff!important; transition:all .3s ease;} 
button:hover{transform:translateY(-2px); box-shadow:0 5px 15px rgba(0,0,0,.1);} 
.input-container{border-radius:10px; box-shadow:0 2px 8px rgba(0,0,0,.05); background:rgba(255,255,255,.6); padding:20px; margin-bottom:1rem;} 
.advanced-settings{margin-top:1rem; padding:1rem; border-radius:10px; background:rgba(255,255,255,.6);} 
.example-region{background:rgba(255,255,255,.5); border-radius:10px; padding:1rem; margin-top:1rem;} 
"""

# ===== Gradio UI =====
def create_interface():
    with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
        gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
        gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')

        with gr.Group(elem_classes="model-description"):
            gr.HTML("""
            <p>
            ๋ณธ ๋ชจ๋ธ์€ ์—ฐ๊ตฌ ๋ชฉ์ ์œผ๋กœ ํŠน์ •์ธ์˜ ์–ผ๊ตด๊ณผ ์™ธ๋ชจ๋ฅผ ํ•™์Šตํ•œ LoRA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br>
            ๋ชฉ์ ์™ธ์˜ ์šฉ๋„๋กœ ๋ฌด๋‹จ ์‚ฌ์šฉ ์•Š๋„๋ก ์œ ์˜ํ•ด ์ฃผ์„ธ์š”.<br>
            (์˜ˆ์‹œ prompt ์‚ฌ์šฉ ์‹œ ๋ฐ˜๋“œ์‹œ 'kim'์„ ํฌํ•จํ•˜์—ฌ์•ผ ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.)
            </p>
            """)

        # ===== ๋ฉ”์ธ ์ž…๋ ฅ =====
        with gr.Column():
            with gr.Row(elem_classes="input-container"):
                user_prompt = gr.Text(label="Prompt", max_lines=1, value=examples[0])
                style_select = gr.Radio(label="Style Preset", choices=list(STYLE_PRESETS.keys()), value="None", interactive=True)
                run_button = gr.Button("Generate", variant="primary")

            result_image = gr.Image(label="Generated Image")
            seed_output = gr.Number(label="Seed")

            # ===== ๊ณ ๊ธ‰ ์„ค์ • =====
            with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
                with gr.Row():
                    guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
                    num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=30)
                    lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0)

            # ===== ์˜ˆ์‹œ ์˜์—ญ =====
            with gr.Group(elem_classes="example-region"):
                gr.Markdown("### Examples")
                gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)

        # ===== ์ด๋ฒคํŠธ =====
        run_button.click(
            fn=generate_image,
            inputs=[
                user_prompt,
                style_select,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                lora_scale,
            ],
            outputs=[result_image, seed_output],
        )
    
    return demo

# ===== ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‹คํ–‰ =====
if __name__ == "__main__":
    demo = create_interface()
    demo.queue()
    demo.launch()