chocs / app-backup.py
seawolf2357's picture
Create app-backup.py
4d01430 verified
raw
history blame
9.29 kB
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/kim-korea" # ํŠน์ • ์ •์น˜์ธ์„ ํ•™์Šตํ•œ LoRA ๋ชจ๋ธ
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
@spaces.GPU(duration=60)
def inference(
prompt,
seed=42,
randomize_seed=True,
width=1024,
height=768,
guidance_scale=3.5,
num_inference_steps=30,
lora_scale=1.0,
progress=None,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(int(seed))
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return just the image and seed
return image, seed
# ์˜ˆ์‹œ ๋ฌธ๊ตฌ: ํŠน์ • ์ •์น˜์ธ Mr. KIM์˜ ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์„ ๋ฌ˜์‚ฌ
examples = [
"Mr. KIM holding up a 'Fighting!' banner with both hands, showing patriotic pride and determination for national excellence. ",
"Mr. KIM raising both arms in celebration with a triumphant expression, showing victory and hope for the future.",
"Mr. KIM jogging in a park wearing athletic gear, demonstrating healthy lifestyle and energetic leadership qualities.",
"Mr. KIM warmly shaking hands with female citizens in a crowded street, showing genuine care and connection with women voters. ",
"Mr. KIM at a campaign rally, pointing toward the horizon with an inspiring gesture while female and kids audience members applaud. ",
"Mr. KIM participating in a community event, surrounded by enthusiastic female supporters cheering ",
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers. ",
"Mr. KIM walking through a university campus, discussing education policies with female students and professors. ",
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression. ",
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute. ",
]
# UI๋ฅผ ๋ถ‰์€ ๊ณ„์—ด ๊ทธ๋ผ๋””์—์ด์…˜์œผ๋กœ ๋””์ž์ธ
custom_css = """
:root {
--color-primary: #8F1A3A; /* ๋ถ‰์€ ํ†ค์˜ ๋ฉ”์ธ ์ปฌ๋Ÿฌ */
--color-secondary: #FF4B4B; /* ํฌ์ธํŠธ ์ปฌ๋Ÿฌ(๋ฐ์€ ๋นจ๊ฐ•) */
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
}
footer {
visibility: hidden;
}
.gradio-container {
background: var(--background-fill-primary);
}
.title {
color: var(--color-primary) !important;
font-size: 3rem !important;
font-weight: 700 !important;
text-align: center;
margin: 1rem 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.05);
font-family: 'Playfair Display', serif;
}
.subtitle {
color: #4A5568 !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 1.5rem;
font-style: italic;
}
.collection-link {
text-align: center;
margin-bottom: 2rem;
font-size: 1.1rem;
}
.collection-link a {
color: var(--color-primary);
text-decoration: underline;
transition: color 0.3s ease;
}
.collection-link a:hover {
color: var(--color-secondary);
}
.model-description {
background-color: rgba(255, 255, 255, 0.8);
border-radius: 12px;
padding: 24px;
margin: 20px 0;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
border-left: 5px solid var(--color-primary);
}
button.primary {
background-color: var(--color-primary) !important;
transition: all 0.3s ease;
color: #fff !important;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.input-container {
border-radius: 10px;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
background-color: rgba(255, 255, 255, 0.6);
padding: 20px;
margin-bottom: 1rem;
}
.advanced-settings {
margin-top: 1rem;
padding: 1rem;
border-radius: 10px;
background-color: rgba(255, 255, 255, 0.6);
}
.example-region {
background-color: rgba(255, 255, 255, 0.5);
border-radius: 10px;
padding: 1rem;
margin-top: 1rem;
}
"""
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
# ์ปฌ๋ ‰์…˜ ๋งํฌ ๋˜๋Š” ์•ˆ๋‚ด๋ฌธ์„ ํ•„์š” ์‹œ ์ˆ˜์ •/์‚ญ์ œ
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
# ๋ชจ๋ธ ์„ค๋ช…: ํŠน์ • ์ •์น˜์ธ์— ๋Œ€ํ•œ LoRA ๋ชจ๋ธ์ž„์„ ์–ธ๊ธ‰
with gr.Group(elem_classes="model-description"):
gr.HTML("""
<p>
๋ณธ ๋ชจ๋ธ์€ ์—ฐ๊ตฌ ๋ชฉ์ ์œผ๋กœ ํŠน์ •์ธ์˜ ์–ผ๊ตด๊ณผ ์™ธ๋ชจ๋ฅผ ํ•™์Šตํ•œ LoRA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br>
๋ชฉ์ ์™ธ์˜ ์šฉ๋„๋กœ ๋ฌด๋‹จ ์‚ฌ์šฉ ์•Š๋„๋ก ์œ ์˜ํ•ด ์ฃผ์„ธ์š”.<br>
(์˜ˆ์‹œ prompt ์‚ฌ์šฉ ์‹œ ๋ฐ˜๋“œ์‹œ 'kim'์„ ํฌํ•จํ•˜์—ฌ์•ผ ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.)
</p>
""")
# ๋ฉ”์ธ UI
with gr.Column(elem_id="col-container"):
with gr.Row(elem_classes="input-container"):
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt (add [trigger] at the end)",
value=examples[0] # ๊ธฐ๋ณธ ์˜ˆ์‹œ
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed", visible=True)
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Group(elem_classes="example-region"):
gr.Markdown("### Examples")
gr.Examples(
examples=examples,
inputs=prompt,
outputs=None, # Don't auto-run examples
fn=None, # No function to run for examples - just fill the prompt
cache_examples=False,
)
# ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed_output],
)
demo.queue()
demo.launch()