|
import os |
|
import cv2 |
|
import numpy as np |
|
import imghdr |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.preprocessing import image |
|
from PIL import Image |
|
from PIL.ExifTags import TAGS |
|
|
|
|
|
model_path = "deepfake_detector.h5" |
|
model = load_model(model_path) |
|
|
|
|
|
img_height, img_width = 128, 128 |
|
|
|
|
|
def predict_image(img_path): |
|
if not os.path.exists(img_path): |
|
return "Image path does not exist." |
|
img = image.load_img(img_path, target_size=(img_height, img_width)) |
|
img_array = image.img_to_array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
prediction = model.predict(img_array) |
|
return "Fake" if prediction[0][0] > 0.5 else "Real" |
|
|
|
def predict_video(video_path): |
|
"""Predict whether a video is real or fake by analyzing frames.""" |
|
try: |
|
cap = cv2.VideoCapture(video_path) |
|
fake_count, real_count = 0, 0 |
|
total_frames = 0 |
|
results = {} |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
|
|
if total_frames % 5 == 0: |
|
|
|
frame_path = f"temp_frame_{total_frames}.jpg" |
|
cv2.imwrite(frame_path, frame) |
|
|
|
frame_results = combined_prediction(frame_path) |
|
if frame_results["Final Prediction"] == "Fake": |
|
fake_count += 1 |
|
else: |
|
real_count += 1 |
|
|
|
os.remove(frame_path) |
|
|
|
total_frames += 1 |
|
|
|
cap.release() |
|
|
|
|
|
total_analyzed_frames = fake_count + real_count |
|
fake_percentage = (fake_count / total_analyzed_frames * 100) if total_analyzed_frames > 0 else 0 |
|
|
|
results["Total Frames Analyzed"] = total_analyzed_frames |
|
results["Fake Frames"] = fake_count |
|
results["Real Frames"] = real_count |
|
results["Fake Percentage"] = round(fake_percentage, 2) |
|
results["Final Video Prediction"] = "Fake" if fake_percentage > 50 else "Real" |
|
results["Confidence Score"] = round(abs(50 - fake_percentage) / 50, 2) |
|
|
|
return results |
|
|
|
except Exception as e: |
|
return {"Error": f"Error analyzing video: {str(e)}"} |
|
|
|
|
|
def check_metadata(img_path): |
|
try: |
|
img = Image.open(img_path) |
|
exif_data = img._getexif() |
|
if not exif_data: |
|
return "Fake (missing metadata)" |
|
metadata = {TAGS.get(tag): value for tag, value in exif_data.items() if tag in TAGS} |
|
return "Real (metadata present)" if metadata else "Fake (missing metadata)" |
|
except Exception as e: |
|
return f"Error analyzing metadata: {str(e)}" |
|
|
|
|
|
def analyze_artifacts(img_path): |
|
try: |
|
img = cv2.imread(img_path) |
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
laplacian = cv2.Laplacian(img_gray, cv2.CV_64F) |
|
mean_var = np.mean(np.var(laplacian)) |
|
return "Fake (high artifact density)" if mean_var > 10 else "Real" |
|
except Exception as e: |
|
return f"Error analyzing artifacts: {str(e)}" |
|
|
|
|
|
def detect_noise_patterns(img_path): |
|
try: |
|
img = cv2.imread(img_path) |
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
noise_std = np.std(img_gray) |
|
return "Fake (unnatural noise patterns)" if noise_std < 5 else "Real" |
|
except Exception as e: |
|
return f"Error analyzing noise patterns: {str(e)}" |
|
|
|
|
|
def calculate_symmetry(img_path): |
|
try: |
|
img = cv2.imread(img_path) |
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
img_flipped_v = cv2.flip(img_gray, 1) |
|
img_flipped_h = cv2.flip(img_gray, 0) |
|
vertical_symmetry = 1 - np.mean(np.abs(img_gray - img_flipped_v)) / 255 |
|
horizontal_symmetry = 1 - np.mean(np.abs(img_gray - img_flipped_h)) / 255 |
|
return { |
|
"Vertical Symmetry": round(vertical_symmetry, 2), |
|
"Horizontal Symmetry": round(horizontal_symmetry, 2) |
|
} |
|
except Exception as e: |
|
return {"Error": str(e)} |
|
|
|
|
|
def combined_prediction(img_path): |
|
results = {} |
|
cnn_prediction = predict_image(img_path) |
|
results["CNN Prediction"] = cnn_prediction |
|
cnn_score = 1 if cnn_prediction == "Fake" else 0 |
|
metadata_result = check_metadata(img_path) |
|
results["Metadata Analysis"] = metadata_result |
|
metadata_score = 1 if "Fake" in metadata_result else 0 |
|
artifact_result = analyze_artifacts(img_path) |
|
results["Artifact Analysis"] = artifact_result |
|
artifact_score = 1 if "Fake" in artifact_result else 0 |
|
noise_result = detect_noise_patterns(img_path) |
|
results["Noise Pattern Analysis"] = noise_result |
|
noise_score = 1 if "Fake" in noise_result else 0 |
|
symmetry_results = calculate_symmetry(img_path) |
|
results["Symmetry Analysis"] = symmetry_results |
|
vertical_symmetry = symmetry_results.get("Vertical Symmetry", 0) |
|
horizontal_symmetry = symmetry_results.get("Horizontal Symmetry", 0) |
|
symmetry_score = 0 |
|
if vertical_symmetry != "Unknown" and horizontal_symmetry != "Unknown": |
|
if vertical_symmetry > 0.9 or horizontal_symmetry > 0.9: |
|
symmetry_score = 1 |
|
total_score = (cnn_score * 0.4 + metadata_score * 0.1 + |
|
artifact_score * 0.15 + noise_score * 0.15 + |
|
symmetry_score * 0.2) |
|
results["Final Prediction"] = "Fake" if total_score > 0.5 else "Real" |
|
results["Confidence Score"] = round(total_score, 2) |
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
test_image_path = "C:/Users/ramya/OneDrive - iiit-b/Desktop/test1.jpg" |
|
if os.path.exists(test_image_path): |
|
final_results = combined_prediction(test_image_path) |
|
print("\nCombined Prediction Results:") |
|
for key, value in final_results.items(): |
|
if isinstance(value, dict): |
|
print(f"{key}:") |
|
for sub_key, sub_value in value.items(): |
|
print(f" {sub_key}: {sub_value}") |
|
else: |
|
print(f"{key}: {value}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|