Spaces:
Running
on
T4
Running
on
T4
# -*- coding: utf-8 -*- | |
import sys | |
import os | |
import torch | |
# Import important files | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
from architecture.cunet import UNet_Full # This place need to adjust for different models | |
from train_code.train_master import train_master | |
# Mixed precision training | |
scaler = torch.cuda.amp.GradScaler() | |
class train_cunet(train_master): | |
def __init__(self, options, args) -> None: | |
super().__init__(options, args, "cunet") # Pass a model name unique code | |
def loss_init(self): | |
# Prepare pixel loss | |
self.pixel_loss_load() | |
def call_model(self): | |
# Generator Prepare (Don't formet torch.compile if needed) | |
self.generator = UNet_Full().cuda() # Cunet only support 2x SR | |
# self.generator = torch.compile(self.generator).cuda() | |
self.generator.train() | |
def run(self): | |
self.master_run() | |
def calculate_loss(self, gen_hr, imgs_hr): | |
# Generator pixel loss (l1 loss): generated vs. GT | |
l_g_pix = self.cri_pix(gen_hr, imgs_hr, self.batch_idx) | |
self.weight_store["pixel_loss"] = l_g_pix | |
self.generator_loss += l_g_pix | |
def tensorboard_report(self, iteration): | |
# self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration) | |
self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration) | |