Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, List, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU | |
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0 | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm | |
logger = logging.get_logger(__name__) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | |
# "feed_forward_chunk_size" can be used to save memory | |
if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
ff_output = torch.cat( | |
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
dim=chunk_dim, | |
) | |
return ff_output | |
class SiamLayoutJointTransformerBlock(nn.Module): | |
def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False,attention_type="default",bbox_pre_only=True,bbox_with_temb = False): | |
super().__init__() | |
# text | |
self.context_pre_only = context_pre_only | |
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" | |
# bbox | |
self.bbox_pre_only = bbox_pre_only | |
if bbox_pre_only: | |
if bbox_with_temb: | |
bbox_norm_type = "ada_norm_continous" | |
else: | |
bbox_norm_type = "LayerNorm" | |
else: | |
bbox_norm_type = "ada_norm_zero" | |
self.bbox_norm_type = bbox_norm_type | |
# img | |
self.norm1 = AdaLayerNormZero(dim) | |
# text | |
if context_norm_type == "ada_norm_continous": | |
self.norm1_context = AdaLayerNormContinuous( | |
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" | |
) | |
elif context_norm_type == "ada_norm_zero": | |
self.norm1_context = AdaLayerNormZero(dim) | |
else: | |
raise ValueError( | |
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" | |
) | |
if hasattr(F, "scaled_dot_product_attention"): | |
processor = JointAttnProcessor2_0() | |
else: | |
raise ValueError( | |
"The current PyTorch version does not support the `scaled_dot_product_attention` function." | |
) | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=context_pre_only, | |
bias=True, | |
processor=processor, | |
) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
if not context_pre_only: | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
else: | |
self.norm2_context = None | |
self.ff_context = None | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
self.attention_type = attention_type | |
if self.attention_type == "layout": | |
self.bbox_fuser_block = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=bbox_pre_only, | |
bias=True, | |
processor=processor, | |
) | |
self.bbox_forward = zero_module(nn.Linear(dim, dim)) | |
self.bbox_pre_only = bbox_pre_only | |
if self.bbox_norm_type == "ada_norm_continous": | |
self.norm1_bbox = AdaLayerNormContinuous( | |
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" | |
) | |
elif self.bbox_norm_type == "LayerNorm": | |
self.norm1_bbox = nn.LayerNorm(dim) | |
elif self.bbox_norm_type == "ada_norm_zero": | |
self.norm1_bbox = AdaLayerNormZero(dim) | |
if not self.bbox_pre_only: | |
self.norm2_bbox = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_bbox = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
else: | |
self.norm2_bbox = None | |
self.ff_bbox = None | |
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor,bbox_hidden_states=None,bbox_scale=1.0 | |
): | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
if self.context_pre_only: | |
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) | |
else: | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
# img-txt MM-Attention. | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states | |
) | |
attn_output = gate_msa.unsqueeze(1) * attn_output #gate_msa | |
# Layout | |
if self.attention_type == "layout" and bbox_scale!=0.0: | |
if self.bbox_pre_only: | |
norm_bbox_hidden_states = self.norm1_bbox(bbox_hidden_states, temb) | |
else: | |
norm_bbox_hidden_states, bbox_gate_msa, bbox_shift_mlp, bbox_scale_mlp, bbox_gate_mlp = self.norm1_bbox( | |
bbox_hidden_states, emb=temb | |
) | |
# img-bbox MM-Attention. | |
img_attn_output, bbox_attn_output = self.bbox_fuser_block( | |
hidden_states=norm_hidden_states, encoder_hidden_states=norm_bbox_hidden_states | |
) | |
attn_output = attn_output + bbox_scale*self.bbox_forward(img_attn_output) | |
if self.bbox_pre_only: | |
bbox_hidden_states = None | |
else: | |
bbox_attn_output = bbox_gate_msa.unsqueeze(1) * bbox_attn_output | |
bbox_hidden_states = bbox_hidden_states + bbox_attn_output | |
norm_bbox_hidden_states = self.norm2_bbox(bbox_hidden_states) | |
norm_bbox_hidden_states = norm_bbox_hidden_states * (1 + bbox_scale_mlp[:, None]) + bbox_shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
bbox_ff_output = _chunked_feed_forward( | |
self.ff_bbox, norm_bbox_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
bbox_ff_output = self.ff_bbox(norm_bbox_hidden_states) | |
bbox_hidden_states = bbox_hidden_states + bbox_gate_mlp.unsqueeze(1) * bbox_ff_output | |
# Process attention outputs for the `hidden_states`. | |
hidden_states = hidden_states + attn_output | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
# Process attention outputs for the `encoder_hidden_states`. | |
if self.context_pre_only: | |
encoder_hidden_states = None | |
else: | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
context_ff_output = _chunked_feed_forward( | |
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
return encoder_hidden_states, hidden_states,bbox_hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
elif activation_fn == "swiglu": | |
act_fn = SwiGLU(dim, inner_dim, bias=bias) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |