CreatiLayout / src /models /attention_SiamLayout.py
HuiZhang
Upload 8 files
be186ed verified
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
logger = logging.get_logger(__name__)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
@maybe_allow_in_graph
class SiamLayoutJointTransformerBlock(nn.Module):
def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False,attention_type="default",bbox_pre_only=True,bbox_with_temb = False):
super().__init__()
# text
self.context_pre_only = context_pre_only
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
# bbox
self.bbox_pre_only = bbox_pre_only
if bbox_pre_only:
if bbox_with_temb:
bbox_norm_type = "ada_norm_continous"
else:
bbox_norm_type = "LayerNorm"
else:
bbox_norm_type = "ada_norm_zero"
self.bbox_norm_type = bbox_norm_type
# img
self.norm1 = AdaLayerNormZero(dim)
# text
if context_norm_type == "ada_norm_continous":
self.norm1_context = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif context_norm_type == "ada_norm_zero":
self.norm1_context = AdaLayerNormZero(dim)
else:
raise ValueError(
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
)
if hasattr(F, "scaled_dot_product_attention"):
processor = JointAttnProcessor2_0()
else:
raise ValueError(
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
processor=processor,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
if not context_pre_only:
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_context = None
self.ff_context = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
self.attention_type = attention_type
if self.attention_type == "layout":
self.bbox_fuser_block = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=bbox_pre_only,
bias=True,
processor=processor,
)
self.bbox_forward = zero_module(nn.Linear(dim, dim))
self.bbox_pre_only = bbox_pre_only
if self.bbox_norm_type == "ada_norm_continous":
self.norm1_bbox = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif self.bbox_norm_type == "LayerNorm":
self.norm1_bbox = nn.LayerNorm(dim)
elif self.bbox_norm_type == "ada_norm_zero":
self.norm1_bbox = AdaLayerNormZero(dim)
if not self.bbox_pre_only:
self.norm2_bbox = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_bbox = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_bbox = None
self.ff_bbox = None
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor,bbox_hidden_states=None,bbox_scale=1.0
):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
else:
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# img-txt MM-Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states
)
attn_output = gate_msa.unsqueeze(1) * attn_output #gate_msa
# Layout
if self.attention_type == "layout" and bbox_scale!=0.0:
if self.bbox_pre_only:
norm_bbox_hidden_states = self.norm1_bbox(bbox_hidden_states, temb)
else:
norm_bbox_hidden_states, bbox_gate_msa, bbox_shift_mlp, bbox_scale_mlp, bbox_gate_mlp = self.norm1_bbox(
bbox_hidden_states, emb=temb
)
# img-bbox MM-Attention.
img_attn_output, bbox_attn_output = self.bbox_fuser_block(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_bbox_hidden_states
)
attn_output = attn_output + bbox_scale*self.bbox_forward(img_attn_output)
if self.bbox_pre_only:
bbox_hidden_states = None
else:
bbox_attn_output = bbox_gate_msa.unsqueeze(1) * bbox_attn_output
bbox_hidden_states = bbox_hidden_states + bbox_attn_output
norm_bbox_hidden_states = self.norm2_bbox(bbox_hidden_states)
norm_bbox_hidden_states = norm_bbox_hidden_states * (1 + bbox_scale_mlp[:, None]) + bbox_shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
bbox_ff_output = _chunked_feed_forward(
self.ff_bbox, norm_bbox_hidden_states, self._chunk_dim, self._chunk_size
)
else:
bbox_ff_output = self.ff_bbox(norm_bbox_hidden_states)
bbox_hidden_states = bbox_hidden_states + bbox_gate_mlp.unsqueeze(1) * bbox_ff_output
# Process attention outputs for the `hidden_states`.
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
context_ff_output = _chunked_feed_forward(
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
)
else:
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return encoder_hidden_states, hidden_states,bbox_hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
elif activation_fn == "swiglu":
act_fn = SwiGLU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states