File size: 2,495 Bytes
d008cad
94ec7f8
063e974
 
 
99cbfbc
63beaa0
ab9c217
a406b0b
 
b2a4dc4
6c938cd
28cc6c6
8cd428d
0c0344f
4db3eab
6c938cd
f758117
d1170f5
e2c4c0e
d1170f5
 
e2c4c0e
6f7d7a7
 
e2c4c0e
 
 
0532438
 
8f888de
b75a31b
 
8f888de
b75a31b
8f888de
 
 
 
 
75b78d9
cf4974d
 
 
 
 
 
 
 
 
 
 
 
 
ab9c217
 
32bfd0d
b75a31b
 
db5b28f
b75a31b
 
8f888de
26e6e62
9ca3c5c
 
 
 
 
 
 
db5b28f
b75a31b
 
 
 
 
 
 
 
 
 
26e6e62
 
 
 
 
 
ab9c217
 
 
75b78d9
99cbfbc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st
from st_audiorec import st_audiorec
import matplotlib.pyplot as plt
import sounddevice as sd
import numpy as np
import pandas as pd
import torch
# import torchaudio
import wave
import io
from scipy.io import wavfile
import pydub
import time
import os
import atexit
import librosa

# MODEL LOADING and INITIALISATION

def load_model():
    model = torch.jit.load("snorenetv1_small.ptl")
    model.eval()
    return model
model = load_model()


# Audio parameters
def process_data(waveform_chunks):
    snore = 0
    other = 0
    for chunk in waveform_chunks:
        input_tensor = torch.tensor(chunk).unsqueeze(0).to(torch.float32)
        # st.write(input_tensor[0][98])
        result = model(input_tensor)
        # st.write(result)
        if np.abs(result[0][0]) > np.abs(result[0][1]):
            other += 1
        else:
            snore += 1
    return snore, other

st.sidebar.markdown(
    """
    <div align="justify">
        <h4>ABOUT</h4>
        <p>Transform your sleep experience with the cutting-edge Snore Detector by Hypermind Labs!
        Discover the power to monitor and understand your nighttime sounds like never before.
        Take control of your sleep quality and uncover the secrets of your peaceful slumber with our innovative app.</p>
    </div>
    """,
    unsafe_allow_html=True,
)
st.title('Real-Time Snore Detection App 😴')

uploaded_file = st.file_uploader("Upload Sample", type=["wav"])
if uploaded_file is not None:
    st.write("Analsysing...")
    audio_bytes = uploaded_file.getvalue()
    audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
    chunk_size = 16000
    num_chunks = len(audio_array) // chunk_size
    waveform_chunks = np.array_split(audio_array[:num_chunks * chunk_size], num_chunks)
    snore, other = process_data(waveform_chunks)

    total = snore + other
    snore_percentage = (snore / total) * 100
    other_percentage = (other / total) * 100

    categories = ["Snore", "Other"]
    percentages = [snore_percentage, other_percentage]

    st.write(f'Snore Percentage: {snore_percentage}')
    plt.figure(figsize=(8, 4))
    plt.barh(categories, percentages, color=['#ff0033', '#00ffee'])
    plt.xlabel('Percentage')
    plt.title('Percentage of Snoring')
    plt.xlim(0, 100)

    for i, percentage in enumerate(percentages):
        plt.text(percentage, i, f' {percentage:.2f}%', va='center')
    st.write("DONE")
    st.pyplot(plt)
    

    # # PERCENTAGE OF SNORING PLOT