Spaces:
Runtime error
Runtime error
File size: 2,155 Bytes
d008cad 94ec7f8 063e974 99cbfbc 63beaa0 ab9c217 a406b0b b2a4dc4 6c938cd 28cc6c6 8cd428d 0c0344f 6c938cd f758117 63beaa0 ab9c217 d008cad cda85cb 75b78d9 cf4974d ab9c217 26e6e62 ab9c217 26e6e62 ab9c217 26e6e62 9ca3c5c 26e6e62 ab9c217 75b78d9 99cbfbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import streamlit as st
from st_audiorec import st_audiorec
import matplotlib.pyplot as plt
import sounddevice as sd
import numpy as np
import pandas as pd
import torch
# import torchaudio
import wave
import io
from scipy.io import wavfile
import pydub
import time
import os
import atexit
# MODEL LOADING and INITIALISATION
model = torch.jit.load("snorenetv1_small.ptl")
model.eval()
endReached = False
snore = 0
other = 0
s=0
n=16000
# Audio parameters
st.sidebar.markdown(
"""
<div align="justify">
<h4>ABOUT</h4>
<p>Transform your sleep experience with the cutting-edge Snore Detector by Hypermind Labs!
Discover the power to monitor and understand your nighttime sounds like never before.
Take control of your sleep quality and uncover the secrets of your peaceful slumber with our innovative app.</p>
</div>
""",
unsafe_allow_html=True,
)
st.title('Real-Time Snore Detection App 😴')
uploaded_file = st.file_uploader("Upload Sample", type=["wav"])
if uploaded_file is not None:
audio = pydub.AudioSegment.from_wav(uploaded_file)
audio_data = np.array(audio.get_array_of_samples())
waveform= audio_data
while(endReached == False):
input_tensor = torch.tensor(waveform[s:n]).unsqueeze(0).to(torch.float32)
result = model(input_tensor)
if np.abs(result[0][0]) > np.abs(result[0][1]):
other += 1
else:
snore += 1
s += 16000
n += 16000
if(n>=len(waveform)):
endReached = True
total = snore + other
snore_percentage = (snore / total) * 100
other_percentage = (other / total) * 100
categories = ["Snore", "Other"]
percentages = [snore_percentage, other_percentage]
plt.figure(figsize=(8, 4))
plt.barh(categories, percentages, color=['#ff0033', '#00ffee'])
plt.xlabel('Percentage')
plt.title('Percentage of Snoring')
plt.xlim(0, 100)
for i, percentage in enumerate(percentages):
plt.text(percentage, i, f' {percentage:.2f}%', va='center')
st.write("DONE")
st.pyplot(plt)
# # PERCENTAGE OF SNORING PLOT
|