File size: 2,155 Bytes
d008cad
94ec7f8
063e974
 
 
99cbfbc
63beaa0
ab9c217
a406b0b
 
b2a4dc4
6c938cd
28cc6c6
8cd428d
0c0344f
6c938cd
f758117
63beaa0
 
ab9c217
 
 
 
 
d008cad
cda85cb
75b78d9
cf4974d
 
 
 
 
 
 
 
 
 
 
 
 
ab9c217
 
 
26e6e62
 
 
ab9c217
 
 
 
 
 
 
 
26e6e62
ab9c217
26e6e62
9ca3c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e6e62
 
 
 
 
 
ab9c217
 
 
75b78d9
99cbfbc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import streamlit as st
from st_audiorec import st_audiorec
import matplotlib.pyplot as plt
import sounddevice as sd
import numpy as np
import pandas as pd
import torch
# import torchaudio
import wave
import io
from scipy.io import wavfile
import pydub
import time
import os
import atexit

# MODEL LOADING and INITIALISATION
model = torch.jit.load("snorenetv1_small.ptl")
model.eval()
endReached = False
snore = 0
other = 0
s=0
n=16000

# Audio parameters

st.sidebar.markdown(
    """
    <div align="justify">
        <h4>ABOUT</h4>
        <p>Transform your sleep experience with the cutting-edge Snore Detector by Hypermind Labs!
        Discover the power to monitor and understand your nighttime sounds like never before.
        Take control of your sleep quality and uncover the secrets of your peaceful slumber with our innovative app.</p>
    </div>
    """,
    unsafe_allow_html=True,
)
st.title('Real-Time Snore Detection App 😴')

uploaded_file = st.file_uploader("Upload Sample", type=["wav"])
if uploaded_file is not None:
    audio = pydub.AudioSegment.from_wav(uploaded_file)
    audio_data = np.array(audio.get_array_of_samples())
    waveform= audio_data
    while(endReached == False):
        input_tensor = torch.tensor(waveform[s:n]).unsqueeze(0).to(torch.float32)
        result = model(input_tensor)
        if np.abs(result[0][0]) > np.abs(result[0][1]):
            other += 1
        else:
            snore += 1
        s += 16000
        n += 16000
        if(n>=len(waveform)):
            endReached = True

    total = snore + other
    snore_percentage = (snore / total) * 100
    other_percentage = (other / total) * 100

    categories = ["Snore", "Other"]
    percentages = [snore_percentage, other_percentage]

    plt.figure(figsize=(8, 4))
    plt.barh(categories, percentages, color=['#ff0033', '#00ffee'])
    plt.xlabel('Percentage')
    plt.title('Percentage of Snoring')
    plt.xlim(0, 100)

    for i, percentage in enumerate(percentages):
        plt.text(percentage, i, f' {percentage:.2f}%', va='center')
    st.write("DONE")
    st.pyplot(plt)
    

    # # PERCENTAGE OF SNORING PLOT