File size: 3,059 Bytes
d008cad
94ec7f8
063e974
 
 
99cbfbc
63beaa0
 
a406b0b
 
b2a4dc4
f758117
63beaa0
 
d008cad
 
cda85cb
75b78d9
cf4974d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a15bed1
1b639b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b78d9
99cbfbc
75b78d9
f758117
063e974
99cbfbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import streamlit as st
from st_audiorec import st_audiorec
import matplotlib.pyplot as plt
import sounddevice as sd
import numpy as np
import pandas as pd
import torch
import torchaudio
import wave
import io
from scipy.io import wavfile
# MODEL LOADING and INITIALISATION
model = torch.jit.load("snorenetv1_small.ptl")
model.eval()


# Audio parameters

st.sidebar.markdown(
    """
    <div align="justify">
        <h4>ABOUT</h4>
        <p>Transform your sleep experience with the cutting-edge Snore Detector by Hypermind Labs!
        Discover the power to monitor and understand your nighttime sounds like never before.
        Take control of your sleep quality and uncover the secrets of your peaceful slumber with our innovative app.</p>
    </div>
    """,
    unsafe_allow_html=True,
)
st.title('Real-Time Snore Detection App 😴')

upload_file = st.file_uploader("Upload wav file", type=["wav"])
if upload_file is not None:
    file_details = {
        "Filename": upload_file.name,
        "Filesize":f"{upload_file.size / 1024:.2f} KB",
        "File Type": upload_file.type,
    }
    st.write("File Details:", file_details)


# wav_audio_data = None
# if wav_audio_data is not None:
#     data = np.frombuffer(wav_audio_data, dtype=np.int16)
#     st.write(len(data))
#     duration = len(data)//110000
#     num_of_samples = len(data)
#     sample_rate = num_of_samples // duration
#     # data = np.array(wav_audio_data, dtype=float)
#     max_abs_value = np.max(np.abs(data))
#     np_array = (data/max_abs_value) * 32767
#     scaled_data = np_array.astype(np.int16).tobytes()
#     with io.BytesIO() as fp, wave.open(fp, mode="wb") as waveobj:
#         waveobj.setnchannels(1)
#         waveobj.setframerate(96000)
#         waveobj.setsampwidth(2)
#         waveobj.setcomptype("NONE", "NONE")
#         waveobj.writeframes(scaled_data)
#         wav_make = fp.getvalue()
    
    # with open("output.wav", 'wb') as wav_file:
    #     wav_file.write(wav_make)

    sr, waveform = wavfile.read(upload_file.name)
    snore = 0
    other = 0
    s=0
    n=16000
    endReached = False

    while(endReached==False):
        input_tensor = torch.tensor(waveform[s:n]).unsqueeze(0).to(torch.float32)
        result = model(input_tensor)
        if np.abs(result[0][0]) > np.abs(result[0][1]):
            other += 1
        else:
            snore += 1
        s += 16000
        n += 16000
        if(n >= len(waveform)):
            endReached = True

    # PERCENTAGE OF SNORING PLOT

    total = snore + other
    snore_percentage = (snore / total) * 100
    other_percentage = (other / total) * 100

    categories = ["Snore", "Other"]
    percentages = [snore_percentage, other_percentage]

    plt.figure(figsize=(8, 4))
    plt.barh(categories, percentages, color=['#ff0033', '#00ffee'])
    plt.xlabel('Percentage')
    plt.title('Percentage of Snoring')
    plt.xlim(0, 100)

    for i, percentage in enumerate(percentages):
        plt.text(percentage, i, f' {percentage:.2f}%', va='center')

    st.pyplot(plt)