Spaces:
Runtime error
Runtime error
from pydrive.auth import GoogleAuth | |
from pydrive.drive import GoogleDrive | |
# Authenticate and create the PyDrive client. | |
gauth = GoogleAuth() | |
gauth.LocalWebserverAuth() | |
drive = GoogleDrive(gauth) | |
# Replace 'file_id' with the actual ID of your file in Google Drive. | |
file_id = '1lDfR_B3fYM_rmC8H_HDtRdxJKveYWmOp' | |
# Create a GoogleDriveFile instance with the file ID. | |
file_obj = drive.CreateFile({'id': file_id}) | |
# Download the file content. | |
downloaded_file_path = 'downloaded_model.pth' | |
file_obj.GetContentFile(downloaded_file_path) | |
print("ok") | |
# import gradio as gr | |
# from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
# import torch | |
# from sentence_transformers import SentenceTransformer, models | |
# param_max_length=256 | |
# # Define a function that takes a text input and returns the result | |
# def analyze_text(input): | |
# # Your processing or model inference code here | |
# result = predict_similarity(input) | |
# return result | |
# param_model_name="CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth" | |
# tokenizer = AutoTokenizer.from_pretrained(param_model_name) | |
# class BertForSTS(torch.nn.Module): | |
# def __init__(self): | |
# super(BertForSTS, self).__init__() | |
# #self.bert = models.Transformer('bert-base-uncased', max_seq_length=128) | |
# #self.bert = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth") | |
# self.bert = models.Transformer(param_model_name, max_seq_length=param_max_length) | |
# dimension= self.bert.get_word_embedding_dimension() | |
# #print(dimension) | |
# self.pooling_layer = models.Pooling(dimension) | |
# self.dropout = torch.nn.Dropout(0.1) | |
# # relu activation function | |
# self.relu = torch.nn.ReLU() | |
# # dense layer 1 | |
# self.fc1 = torch.nn.Linear(dimension,512) | |
# # dense layer 2 (Output layer) | |
# self.fc2 = torch.nn.Linear(512,512) | |
# #self.pooling_layer = models.Pooling(self.bert.config.hidden_size) | |
# self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1]) | |
# #self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1, self.relu, self.dropout,self.fc2]) | |
# def forward(self, input_data): | |
# #print(input_data) | |
# x=self.bert(input_data) | |
# x=self.pooling_layer(x) | |
# x=self.fc1(x['sentence_embedding']) | |
# x = self.relu(x) | |
# x = self.dropout(x) | |
# #x = self.fc2(x) | |
# return x | |
# model_load_path = "model.pt" | |
# model = BertForSTS() | |
# model.load_state_dict(torch.load(model_load_path)) | |
# model.to(device) | |
# def predict_similarity(sentence_pair): | |
# test_input = tokenizer(sentence_pair, padding='max_length', max_length = param_max_length, truncation=True, return_tensors="pt").to(device) | |
# test_input['input_ids'] = test_input['input_ids'] | |
# print(test_input['input_ids']) | |
# test_input['attention_mask'] = test_input['attention_mask'] | |
# del test_input['token_type_ids'] | |
# output = model(test_input) | |
# sim = torch.nn.functional.cosine_similarity(output[0], output[1], dim=0).item()*2-1 | |
# return sim | |
# # Create a Gradio interface with a text input zone | |
# iface = gr.Interface( | |
# fn=analyze_text, # The function to be called with user input | |
# inputs=[gr.Textbox(), gr.Textbox()], | |
# outputs="text" # Display the result as text | |
# ) | |
# # # Launch the Gradio interface | |
# iface.launch() |