chengzhang1006's picture
add more informations (#15)
01fba1c verified
"""Predict protein structure using Folding Studio."""
import concurrent.futures
import hashlib
import logging
from io import StringIO
from pathlib import Path
from typing import Any
import gradio as gr
import numpy as np
import plotly.graph_objects as go
from Bio import SeqIO
from Bio.PDB import PDBIO, MMCIFParser, PDBParser, Superimposer
from folding_studio_data_models import FoldingModel
from folding_studio_demo.models import (
AF2Model,
BoltzModel,
ChaiModel,
OpenFoldModel,
ProtenixModel,
)
logger = logging.getLogger(__name__)
SEQUENCE_DIR = Path("sequences")
SEQUENCE_DIR.mkdir(parents=True, exist_ok=True)
OUTPUT_DIR = Path("output")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
THREE_TO_ONE_LETTER = {
"ALA": "A",
"ARG": "R",
"ASN": "N",
"ASP": "D",
"CYS": "C",
"GLN": "Q",
"GLU": "E",
"GLY": "G",
"HIS": "H",
"ILE": "I",
"LEU": "L",
"LYS": "K",
"MET": "M",
"PHE": "F",
"PRO": "P",
"SER": "S",
"THR": "T",
"TRP": "W",
"TYR": "Y",
"VAL": "V",
"SEC": "U",
"PYL": "O",
"ASX": "B",
"GLX": "Z",
"XAA": "X",
"XLE": "J",
"UNK": "X",
}
def convert_to_one_letter(resname: str) -> str:
"""Convert three-letter amino acid code to one-letter code.
Args:
resname (str): Three-letter amino acid code
Returns:
str: One-letter amino acid code
"""
return THREE_TO_ONE_LETTER.get(resname, "X")
def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None:
"""Convert a .cif file to .pdb format using Biopython.
Args:
cif_path (str): Path to input .cif file
pdb_path (str): Path to output .pdb file
"""
# Parse the CIF file
parser = MMCIFParser()
structure = parser.get_structure("structure", cif_path)
# Save as PDB
io = PDBIO()
io.set_structure(structure)
io.save(pdb_path)
def create_plddt_figure(
plddt_vals: list[dict[str, dict[str, list[float]]]],
model_name: str,
indexes: list[int],
) -> go.Figure:
"""Create a plot of metrics."""
plddt_traces = []
for i, (pred_plddt, index) in enumerate(zip(plddt_vals, indexes)):
hover_text = []
plddt_values = []
for chain_id, plddt_val in pred_plddt.items():
plddt_values += plddt_val["values"]
hover_text += [
f"<i>{model_name} {index} - Chain {chain_id}</i><br><i>pLDDT</i>: {plddt:.2f}<br><i>Residue:</i> {code} {idx}"
for idx, (plddt, code) in enumerate(
zip(plddt_val["values"], plddt_val["residue_codes"])
)
]
plddt_traces.append(
go.Scatter(
x=np.arange(len(plddt_values)),
y=plddt_values,
hovertemplate="%{text}<extra></extra>",
text=hover_text,
name=f"{model_name} {index}",
visible=True,
)
)
plddt_fig = go.Figure(data=plddt_traces)
plddt_fig.update_layout(
title="pLDDT",
xaxis_title="Residue",
yaxis_title="pLDDT",
height=500,
template="simple_white",
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
)
return plddt_fig
def _write_fasta_file(
sequence: str, directory: Path = SEQUENCE_DIR
) -> tuple[str, Path]:
"""Write sequence to FASTA file.
Args:
sequence (str): Sequence to write to FASTA file
directory (Path): Directory to write FASTA file to (default: SEQUENCE_DIR)
Returns:
tuple[str, Path]: Tuple containing the sequence ID and the path to the FASTA file
"""
input_rep = list(SeqIO.parse(StringIO(sequence), "fasta"))
if not input_rep:
raise gr.Error("No sequence found")
seq_id = hashlib.sha256(
"_".join([str(records.seq) for records in input_rep]).encode()
).hexdigest()
seq_file = directory / f"sequence_{seq_id}.fasta"
with open(seq_file, "w") as f:
f.write(sequence)
return seq_id, seq_file
def extract_plddt_from_structure(
structure_path: str,
) -> dict[str, dict[str, list[float]]]:
"""Extract pLDDT values and residue codes from a structure file.
Args:
structure_path (Path): Path to structure file
Returns:
tuple[list[float], list[str]]: Tuple containing lists of pLDDT values and residue codes
"""
if Path(structure_path).suffix == ".cif":
structure = MMCIFParser().get_structure("structure", structure_path)
else:
structure = PDBParser().get_structure("structure", structure_path)
# Lists to store pLDDT values and residue codes
plddt_values = {}
# Iterate through all atoms
for model in structure:
for chain in model:
plddt_values[chain.id] = {"values": [], "residue_codes": []}
for residue in chain:
# Get the first atom of each residue (usually CA atom)
if "CA" in residue:
# The B-factor contains the pLDDT value
plddt = residue["CA"].get_bfactor()
plddt_values[chain.id]["values"].append(plddt)
# Get residue code and convert to one-letter code
plddt_values[chain.id]["residue_codes"].append(
convert_to_one_letter(residue.get_resname())
)
return plddt_values
def predict(
sequence: str,
api_key: str,
model_type: FoldingModel,
format_fasta: bool = False,
progress=gr.Progress(),
) -> tuple[str, str]:
"""Predict protein structure from amino acid sequence using Boltz model.
Args:
sequence (str): Amino acid sequence to predict structure for
api_key (str): Folding API key
model (FoldingModel): Folding model to use
format_fasta (bool): Whether to format the FASTA file
progress (gr.Progress): Gradio progress tracker
Returns:
tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot
"""
if not api_key:
raise gr.Error("Missing API key, please enter a valid API key")
progress(0, desc="Setting up prediction...")
# Set up unique output directory based on sequence hash
seq_id, seq_file = _write_fasta_file(sequence)
output_dir = OUTPUT_DIR / seq_id / model_type
output_dir.mkdir(parents=True, exist_ok=True)
if model_type == FoldingModel.BOLTZ:
model = BoltzModel(api_key)
elif model_type == FoldingModel.CHAI:
model = ChaiModel(api_key)
elif model_type == FoldingModel.PROTENIX:
model = ProtenixModel(api_key)
elif model_type == FoldingModel.AF2:
model = AF2Model(api_key)
elif model_type == FoldingModel.OPENFOLD:
model = OpenFoldModel(api_key)
else:
raise ValueError(f"Model {model_type} not supported")
# Check if prediction already exists
if not model.has_prediction(output_dir):
progress(0.2, desc="Running prediction...")
# Run prediction
logger.info(f"Predicting {seq_id}")
model.call(seq_file=seq_file, output_dir=output_dir, format_fasta=format_fasta)
logger.info("Prediction done. Output directory: %s", output_dir)
else:
progress(0.2, desc="Using existing prediction...")
logger.info("Prediction already exists. Output directory: %s", output_dir)
progress(0.4, desc="Processing results...")
# Convert output CIF to PDB
if not model.has_prediction(output_dir):
raise gr.Error("No prediction found")
predictions = model.predictions(output_dir)
pdb_paths = []
model_plddt_vals = []
total_predictions = len(predictions)
for i, (model_idx, prediction) in enumerate(predictions.items()):
progress(
0.4 + (0.4 * i / total_predictions), desc=f"Converting model {model_idx}..."
)
prediction_path = prediction["prediction_path"]
logger.info(f"Prediction file: {prediction_path}")
if Path(prediction_path).suffix == ".cif":
converted_pdb_path = str(
output_dir / f"{model.model_name}_prediction_{model_idx}.pdb"
)
convert_cif_to_pdb(str(prediction_path), str(converted_pdb_path))
pdb_paths.append(converted_pdb_path)
else:
pdb_paths.append(str(prediction_path))
plddt_vals = extract_plddt_from_structure(prediction_path)
model_plddt_vals.append(plddt_vals)
progress(0.8, desc="Generating plots...")
indexes = []
for pdb_path in pdb_paths:
if model_type in [
FoldingModel.AF2,
FoldingModel.OPENFOLD,
FoldingModel.SOLOSEQ,
]:
indexes.append(int(Path(pdb_path).stem.split("_")[2]))
else:
indexes.append(int(Path(pdb_path).stem[-1]))
plddt_fig = create_plddt_figure(
plddt_vals=model_plddt_vals,
model_name=model.model_name,
indexes=indexes,
)
progress(1.0, desc="Done!")
return pdb_paths, plddt_fig
def align_structures(
model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]],
) -> list[str]:
"""Align multiple PDB structures to the first structure.
Args:
model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices
Returns:
list[str]: List of paths to aligned PDB files
"""
parser = PDBParser()
io = PDBIO()
# Get the first structure as reference
first_model = next(iter(model_predictions.keys()))
first_pred = next(iter(model_predictions[first_model].values()))
ref_pdb_path = first_pred["pdb_path"]
# Parse reference structure and get CA atoms
ref_structure = parser.get_structure("reference", ref_pdb_path)
ref_atoms = [atom for atom in ref_structure.get_atoms() if atom.get_name() == "CA"]
for model_type in model_predictions.keys():
for index, prediction in model_predictions[model_type].items():
pdb_path = prediction["pdb_path"]
# Parse the structure to align
structure = parser.get_structure(f"{model_type}_{index}", pdb_path)
atoms = [atom for atom in structure.get_atoms() if atom.get_name() == "CA"]
# Create superimposer
sup = Superimposer()
# Set the reference and moving atoms
sup.set_atoms(ref_atoms, atoms)
# Apply the transformation to all atoms in the structure
sup.apply(structure.get_atoms())
# Save the aligned structure
aligned_path = str(Path(pdb_path).parent / f"aligned_{Path(pdb_path).name}")
io.set_structure(structure)
io.save(aligned_path)
model_predictions[model_type][index]["pdb_path"] = aligned_path
return model_predictions
def filter_predictions(
model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]],
af2_selected: list[int],
openfold_selected: list[int],
solo_selected: list[int],
chai_selected: list[int],
boltz_selected: list[int],
protenix_selected: list[int],
) -> tuple[list[str], go.Figure]:
"""Filter predictions based on selected checkboxes.
Args:
aligned_paths (list[str]): List of aligned PDB paths
plddt_fig (go.Figure): Original pLDDT plot
chai_selected (list[int]): Selected Chai model indices
boltz_selected (list[int]): Selected Boltz model indices
protenix_selected (list[int]): Selected Protenix model indices
model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices
Returns:
tuple[list[str], go.Figure]: Filtered PDB paths and updated pLDDT plot
"""
# Create a new figure with only selected traces
filtered_fig = go.Figure()
# Keep track of which traces to show
filtered_paths = []
# Helper function to check if a trace should be visible
def should_show_trace(model_name, pred_index: int) -> bool:
if model_name == FoldingModel.CHAI and pred_index in chai_selected:
return True
if model_name == FoldingModel.BOLTZ and pred_index in boltz_selected:
return True
if model_name == FoldingModel.PROTENIX and pred_index in protenix_selected:
return True
if model_name == FoldingModel.AF2 and pred_index in af2_selected:
return True
if model_name == FoldingModel.OPENFOLD and pred_index in openfold_selected:
return True
if model_name == FoldingModel.SOLOSEQ and pred_index in solo_selected:
return True
return False
# Filter traces and paths
for model_type in model_predictions.keys():
for index, prediction in model_predictions[model_type].items():
if should_show_trace(model_type, index):
filtered_fig.add_trace(prediction["plddt_trace"])
filtered_paths.append(prediction["pdb_path"])
# Update layout
filtered_fig.update_layout(
title="pLDDT",
xaxis_title="Residue index",
yaxis_title="pLDDT",
height=500,
template="simple_white",
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
)
return filtered_paths, filtered_fig
def run_prediction(
sequence: str,
api_key: str,
model_type: FoldingModel,
format_fasta: bool = False,
) -> dict[FoldingModel, dict[int, dict[str, Any]]]:
"""Run a single prediction.
Args:
sequence (str): Amino acid sequence to predict structure for
api_key (str): Folding API key
model_type (FoldingModel): Folding model to use
format_fasta (bool): Whether to format the FASTA file
Returns:
Tuple containing:
- List of PDB paths
- pLDDT plot
- Dictionary mapping model to prediction indices
"""
model_pdb_paths, model_plddt_traces = predict(
sequence, api_key, model_type, format_fasta=format_fasta
)
model_predictions = {}
for pdb_path, plddt_traces in zip(model_pdb_paths, model_plddt_traces.data):
if model_type in [
FoldingModel.AF2,
FoldingModel.OPENFOLD,
FoldingModel.SOLOSEQ,
]:
index = int(Path(pdb_path).stem.split("_")[2])
else:
index = int(Path(pdb_path).stem[-1])
model_predictions[index] = {"pdb_path": pdb_path, "plddt_trace": plddt_traces}
return model_predictions
def predict_comparison(
sequence: str, api_key: str, model_types: list[FoldingModel], progress=gr.Progress()
) -> tuple[
dict[FoldingModel, dict[int, dict[str, Any]]],
gr.CheckboxGroup,
gr.CheckboxGroup,
gr.CheckboxGroup,
gr.CheckboxGroup,
gr.CheckboxGroup,
gr.CheckboxGroup,
]:
"""Predict protein structure from amino acid sequence using multiple models.
Args:
sequence (str): Amino acid sequence to predict structure for
api_key (str): Folding API key
model_types (list[FoldingModel]): List of folding models to use
progress (gr.Progress): Gradio progress tracker
Returns:
tuple containing:
- dict[FoldingModel, dict[int, dict[str, Any]]]: Model predictions mapping
- gr.CheckboxGroup: AF2 predictions checkbox group
- gr.CheckboxGroup: OpenFold predictions checkbox group
- gr.CheckboxGroup: SoloSeq predictions checkbox group
- gr.CheckboxGroup: Chai predictions checkbox group
- gr.CheckboxGroup: Boltz predictions checkbox group
- gr.CheckboxGroup: Protenix predictions checkbox group
"""
if not api_key:
raise gr.Error("Missing API key, please enter a valid API key")
progress(0, desc="Starting parallel predictions...")
# Run predictions in parallel
model_predictions = {}
with concurrent.futures.ThreadPoolExecutor() as executor:
# Create a future for each model prediction
future_to_model = {
executor.submit(
run_prediction, sequence, api_key, model_type, True
): model_type
for model_type in model_types
}
# Process results as they complete
total_models = len(model_types)
completed = 0
for future in concurrent.futures.as_completed(future_to_model):
model_type = future_to_model[future]
try:
model_preds = future.result()
model_predictions[model_type] = model_preds
completed += 1
progress(
completed / total_models,
desc=f"Completed {model_type} prediction...",
)
except Exception as e:
logger.error(f"Prediction failed for {model_type}: {str(e)}")
raise gr.Error(f"Prediction failed for {model_type}: {str(e)}")
progress(0.9, desc="Aligning structures...")
model_predictions = align_structures(model_predictions)
progress(1.0, desc="Done!")
# Create checkbox groups for each model type
af2_predictions = gr.CheckboxGroup(
visible=model_predictions.get(FoldingModel.AF2) is not None,
choices=list(model_predictions.get(FoldingModel.AF2, {}).keys()),
value=list(model_predictions.get(FoldingModel.AF2, {}).keys()),
)
openfold_predictions = gr.CheckboxGroup(
visible=model_predictions.get(FoldingModel.OPENFOLD) is not None,
choices=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()),
value=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()),
)
solo_predictions = gr.CheckboxGroup(
visible=model_predictions.get(FoldingModel.SOLOSEQ) is not None,
choices=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()),
value=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()),
)
chai_predictions = gr.CheckboxGroup(
visible=model_predictions.get(FoldingModel.CHAI) is not None,
choices=list(model_predictions.get(FoldingModel.CHAI, {}).keys()),
value=list(model_predictions.get(FoldingModel.CHAI, {}).keys()),
)
boltz_predictions = gr.CheckboxGroup(
visible=model_predictions.get(FoldingModel.BOLTZ) is not None,
choices=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()),
value=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()),
)
protenix_predictions = gr.CheckboxGroup(
visible=model_predictions.get(FoldingModel.PROTENIX) is not None,
choices=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()),
value=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()),
)
return (
model_predictions,
af2_predictions,
openfold_predictions,
solo_predictions,
chai_predictions,
boltz_predictions,
protenix_predictions,
)