Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import torch.nn as nn | |
import torch | |
import torch.nn.functional as F | |
from diffusers.models.embeddings import apply_rotary_emb | |
from einops import rearrange | |
from .norm_layer import RMSNorm | |
class FluxIPAttnProcessor(nn.Module): | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__( | |
self, | |
hidden_size=None, | |
ip_hidden_states_dim=None, | |
): | |
super().__init__() | |
self.norm_ip_q = RMSNorm(128, eps=1e-6) | |
self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size) | |
self.norm_ip_k = RMSNorm(128, eps=1e-6) | |
self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size) | |
def __call__( | |
self, | |
attn, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
emb_dict={}, | |
subject_emb_dict={}, | |
*args, | |
**kwargs, | |
) -> torch.FloatTensor: | |
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
# IPadapter | |
ip_hidden_states = self._get_ip_hidden_states( | |
attn, | |
query if encoder_hidden_states is not None else query[:, emb_dict['length_encoder_hidden_states']:], | |
subject_emb_dict.get('ip_hidden_states', None) | |
) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
if encoder_hidden_states is not None: | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] :], | |
) | |
if ip_hidden_states is not None: | |
hidden_states = hidden_states + ip_hidden_states * subject_emb_dict.get('scale', 1.0) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
else: | |
if ip_hidden_states is not None: | |
hidden_states[:, emb_dict['length_encoder_hidden_states']:] = \ | |
hidden_states[:, emb_dict['length_encoder_hidden_states']:] + \ | |
ip_hidden_states * subject_emb_dict.get('scale', 1.0) | |
return hidden_states | |
def _scaled_dot_product_attention(self, query, key, value, attention_mask=None, heads=None): | |
query = rearrange(query, '(b h) l c -> b h l c', h=heads) | |
key = rearrange(key, '(b h) l c -> b h l c', h=heads) | |
value = rearrange(value, '(b h) l c -> b h l c', h=heads) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None) | |
hidden_states = rearrange(hidden_states, 'b h l c -> (b h) l c', h=heads) | |
hidden_states = hidden_states.to(query) | |
return hidden_states | |
def _get_ip_hidden_states( | |
self, | |
attn, | |
img_query, | |
ip_hidden_states, | |
): | |
if ip_hidden_states is None: | |
return None | |
if not hasattr(self, 'to_k_ip') or not hasattr(self, 'to_v_ip'): | |
return None | |
ip_query = self.norm_ip_q(rearrange(img_query, 'b l (h d) -> b h l d', h=attn.heads)) | |
ip_query = rearrange(ip_query, 'b h l d -> (b h) l d') | |
ip_key = self.to_k_ip(ip_hidden_states) | |
ip_key = self.norm_ip_k(rearrange(ip_key, 'b l (h d) -> b h l d', h=attn.heads)) | |
ip_key = rearrange(ip_key, 'b h l d -> (b h) l d') | |
ip_value = self.to_v_ip(ip_hidden_states) | |
ip_value = attn.head_to_batch_dim(ip_value) | |
ip_hidden_states = self._scaled_dot_product_attention( | |
ip_query.to(ip_value.dtype), ip_key.to(ip_value.dtype), ip_value, None, attn.heads) | |
ip_hidden_states = ip_hidden_states.to(img_query.dtype) | |
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) | |
return ip_hidden_states | |