Spaces:
Sleeping
Sleeping
File size: 2,000 Bytes
109014c a20dfac ecd63b4 c124df1 ecd63b4 c124df1 ecd63b4 0583c4b 954e857 0583c4b c124df1 0583c4b 954e857 0583c4b a818c02 0583c4b e87746b c124df1 e87746b ecd63b4 0583c4b ecd63b4 c124df1 ecd63b4 0583c4b ecd63b4 954e857 ecd63b4 0583c4b ecd63b4 e87746b c124df1 ecd63b4 c124df1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import os
import huggingface_hub
import streamlit as st
from config import config
from vllm import LLM, SamplingParams
from functioncall import ModelInference
sys_msg = """You are an expert financial advisor named IRAI. You have a comprehensive understanding of finance and investing with experience and expertise in all areas of finance.
#Objective:
Answer questions accurately and truthfully given your current knowledge. You do not have access to up-to-date current market data; this will be available in the future. Answer the question directly.
#Style and tone:
Answer in a friendly and engaging manner representing a top female investment professional working at a leading investment bank.
#Audience:
The questions will be asked by top technology executives and CFO of large fintech companies and successful startups.
#Response:
Direct answer to question, concise yet insightful."""
@st.cache_resource(show_spinner="Loading model..")
def init_llm():
huggingface_hub.login(token=os.getenv("HF_TOKEN"), new_session=False)
llm = ModelInference(chat_template='chatml')
return llm
def get_response(prompt):
try:
return llm.generate_function_call(
prompt,
config.chat_template,
config.num_fewshot,
config.max_depth
)
except Exception as e:
return f"An error occurred: {str(e)}"
def main():
st.title("LLM-ADE 9B Demo")
input_text = st.text_area("Enter your text here:", value="", height=200)
if st.button("Generate"):
if input_text:
with st.spinner('Generating response...'):
response_text = get_response(input_text)
st.write(response_text)
else:
st.warning("Please enter some text to generate a response.")
llm = init_llm()
def main_headless():
while True:
input_text = input("Enter your text here: ")
print(get_response(input_text))
if __name__ == "__main__":
main_headless()
|