File size: 5,440 Bytes
9e2a95f
3651997
a20dfac
ecd63b4
3651997
 
 
 
 
 
 
c124df1
3651997
 
 
 
 
 
 
 
 
ecd63b4
a818c02
0583c4b
3651997
5894c9b
3651997
 
 
 
 
 
 
 
 
 
 
bbded71
3651997
 
 
 
 
 
 
 
 
 
 
 
 
bbded71
3651997
 
 
 
 
 
 
 
bbded71
3651997
 
 
 
 
 
 
 
 
 
 
bbded71
3651997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e2a95f
bbded71
b1f79b2
 
 
bbded71
 
ecd63b4
 
9e2a95f
ecd63b4
b1f79b2
cec1525
b1f79b2
 
 
 
 
 
 
 
 
cec1525
 
9e2a95f
33e451f
c9d6063
ecd63b4
9e2a95f
7aab4a8
b1f79b2
 
33e451f
c9d6063
 
ecd63b4
 
 
9e2a95f
 
 
3651997
 
 
 
9e2a95f
 
ecd63b4
3651997
e40d8d8
c124df1
5894c9b
9e2a95f
 
5894c9b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from time import time
from pprint import pprint
import huggingface_hub
import streamlit as st
from typing import Literal, Dict
from typing_extensions import TypedDict
import langchain
from langgraph.graph import END, StateGraph
from langchain_community.chat_models import ChatOllama
from logger import logger

from config import config
from agents import get_agents, tools_dict


class GraphState(TypedDict):
    """Represents the state of the graph."""
    question: str
    rephrased_question: str
    function_agent_output: str
    generation: str


@st.cache_resource(show_spinner="Loading model..")
def init_agents() -> dict[str, langchain.agents.AgentExecutor]:
    huggingface_hub.login(token=config.hf_token, new_session=False)
    llm = ChatOllama(model = config.ollama_model, temperature = 0.8)
    return get_agents(llm)


# Nodes -----------------------------------------------------------------------

def question_node(state: GraphState) -> Dict[str, str]:
    """
    Generate a question for the function agent.
    """
    logger.info("Generating question for function agent")
    # config.status.update(label=":question: Breaking down question")
    question = state["question"]
    logger.info(f"Original question: {question}")
    rephrased_question = agents["rephrase_agent"].invoke({"question": question})
    logger.info(f"Rephrased question: {rephrased_question}")
    return {"rephrased_question": rephrased_question}

def function_agent_node(state: GraphState) -> Literal["finished"]:
    """
    Call the function agent
    """
    logger.info("Calling function agent")
    question = state["rephrased_question"]
    response = agents["function_agent"].invoke({"input": question, "tools": tools_dict}).get("output")
    # config.status.update(label=":brain: Analysing data..")
    logger.info(f"Function agent output: {response}")
    return {"function_agent_output": response}

def output_node(state: GraphState) -> Dict[str, str]:
    """
    Generate the final output
    """
    logger.info("Generating output")
    # config.status.update(label=":bulb: Preparing response..")
    generation = agents["output_agent"].invoke({"context": state["function_agent_output"],
                                                "question": state["rephrased_question"]})
    return {"generation": generation}

# Conditional Edge ------------------------------------------------------------

def route_question(state: GraphState) -> Literal["vectorstore", "websearch"]:
    """
    Route quesition to web search or RAG
    """
    logger.info("Routing question")
    # config.state.update(label=":chart_with_upwards_trend: Routing question")
    question = state["question"]
    logger.info(f"Question: {question}")
    source = agents["router_agent"].invoke({"question": question})
    logger.info(source)
    logger.info(source["datasource"])
    if source["datasource"] == "vectorstore":
        return "vectorstore"
    elif source["datasource"] == "websearch":
        return "websearch"


# Graph -----------------------------------------------------------------------

workflow = StateGraph(GraphState)
workflow.add_node("question_rephrase", question_node)
workflow.add_node("function_agent", function_agent_node)
workflow.add_node("output_node", output_node)

workflow.set_entry_point("question_rephrase")
workflow.add_edge("question_rephrase", "function_agent")
workflow.add_edge("function_agent", "output_node")
workflow.set_finish_point("output_node")

flow = workflow.compile()

progress_map = {
    "question_rephrase": ":mag: Collecting data",
    "function_agent": ":bulb: Preparing response",
    "output_node": ":bulb: Done!",
}

def main():
    st.title("LLM-ADE 9B Demo")

    input_text = st.text_area("Enter your text here:", value="", height=200)
    
    def get_response(input_text: str, depth: int = 1) -> str:
        try:
            for output in flow.stream({"question": input_text}):
                for key, value in output.items():
                    config.status.update(label=progress_map[key])
                    pprint(f"Finished running: {key}")
            return value["generation"]
        except Exception as e:
            logger.error(e)
            logger.info("Retrying..")
            if depth < 5:
                return get_response(input_text, depth + 1)

    if st.button("Generate") or input_text:
        start = time()
        if input_text:
            with st.status("Generating response...") as status:
                config.status = status
                config.status.update(label=":question: Breaking down question")
                response = get_response(input_text)
                response = response.replace("$", "\$") # Escape $ to avoid LaTeX rendering
                st.info(response)
                config.status.update(label=f"Finished! ({time() - start:.2f}s)", state="complete", expanded=True)
        else:
            st.warning("Please enter some text to generate a response.")


def main_headless(prompt: str):
    start = time()
    for output in flow.stream({"question": prompt}):
        for key, value in output.items():
            pprint(f"Finished running: {key}")
    print("\033[94m" + value["generation"] + "\033[0m")
    print(f"Time taken: {time() - start:.2f}s\n" + "-" * 20)


agents = init_agents()

if __name__ == "__main__":
    if config.headless:
        import fire
        fire.Fire(main_headless)
    else:
        main()