File size: 20,631 Bytes
ba1724a 7285400 ba1724a 7db94f3 ba1724a 7285400 6c71bbc fbba6d9 4bc7b36 7285400 7db94f3 7285400 fbba6d9 7285400 6c71bbc dfc89a9 7285400 fbba6d9 7285400 7db94f3 7285400 fbba6d9 6c71bbc fbba6d9 6c71bbc d374bc3 6c71bbc 23585ec 6c71bbc 23585ec 20ac67a 6c71bbc a7b2b6d 6c71bbc a7b2b6d 6c71bbc fbba6d9 6c71bbc 23585ec 6c71bbc 7285400 a7b2b6d dc760b4 7db94f3 7285400 4bc7b36 fbba6d9 6c71bbc 7db94f3 fbba6d9 b4a0b98 fbba6d9 4bc7b36 fbba6d9 4bc7b36 7db94f3 4bc7b36 7db94f3 a7b2b6d 6c71bbc fbba6d9 7db94f3 2f53a52 7db94f3 6c71bbc 7db94f3 dc760b4 6c71bbc 2f53a52 6c71bbc 2f53a52 6c71bbc 66113e1 2f53a52 66113e1 6c71bbc 2f53a52 6c71bbc 2f53a52 6c71bbc 2f53a52 5b66ffa 2f53a52 dc760b4 66113e1 dc760b4 dfc89a9 2f53a52 fbba6d9 ca1f4b1 dc760b4 ca1f4b1 2f53a52 6c71bbc dfc89a9 20ac67a dfc89a9 20ac67a 7285400 dc760b4 dfc89a9 7285400 20ac67a 7285400 4bc7b36 7285400 4bc7b36 fbba6d9 dfc89a9 5355a96 4bc7b36 5355a96 a7b2b6d fbba6d9 a7b2b6d fbba6d9 4bc7b36 5355a96 4bc7b36 7db94f3 dc760b4 7285400 fbba6d9 7285400 fbba6d9 7285400 fbba6d9 7285400 fbba6d9 7285400 a7b2b6d 7db94f3 4bc7b36 7db94f3 7285400 fbba6d9 7285400 4bc7b36 7285400 4bc7b36 da3c141 4bc7b36 ba1724a dc760b4 4bc7b36 dc760b4 fbba6d9 7db94f3 5e54614 7db94f3 ba1724a 7285400 6c71bbc 7285400 6c71bbc ba1724a 7285400 4bc7b36 7285400 ba1724a 7285400 ba1724a 7285400 fbba6d9 7285400 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import re
import gradio as gr
from scipy.sparse import load_npz
import torch
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import normalize
from transformers import BertTokenizer, BertModel
import numpy as np
import pandas as pd
from datasets import load_dataset
from gensim.models import KeyedVectors
import plotly.graph_objects as go
from sklearn.decomposition import PCA
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import CrossEncoder
from sentence_transformers import SentenceTransformer
class ArxivSearch:
def __init__(self, dataset, embedding="sbert"):
self.dataset = dataset
self.embedding = embedding
self.query = None
self.documents = []
self.titles = []
self.raw_texts = []
self.arxiv_ids = []
self.last_results = []
self.query_encoding = None
# model selection
self.embedding_dropdown = gr.Dropdown(
choices=["tfidf", "word2vec", "bert", "sbert", "clustered sbert"],
value="sbert",
label="Model"
)
self.plot_button = gr.Button("Show 3D Plot")
# Gradio blocks for UI elements
with gr.Blocks() as self.iface:
gr.Markdown("# arXiv Search Engine")
gr.Markdown("Search arXiv papers by keyword and embedding model.")
self.plot_output = gr.Plot()
with gr.Row():
self.query_box = gr.Textbox(lines=1, placeholder="Enter your search query", label="Query")
self.embedding_dropdown.render()
self.plot_button.render()
with gr.Column():
self.search_button = gr.Button("Search")
self.output_md = gr.Markdown()
self.query_box.submit(
self.search_function,
inputs=[self.query_box, self.embedding_dropdown],
outputs=self.output_md
)
# self.embedding_dropdown.change(
# self.model_switch,
# inputs=[self.embedding_dropdown],
# outputs=self.output_md
# )
self.embedding_dropdown.change(
self.search_function,
inputs=[self.query_box, self.embedding_dropdown],
outputs=self.output_md
)
self.plot_button.click(
self.plot_3d_embeddings,
inputs=[],
outputs=self.plot_output
)
self.search_button.click(
self.search_function,
inputs=[self.query_box, self.embedding_dropdown],
outputs=self.output_md
)
self.load_data(dataset)
# self.load_model(embedding)
self.load_model('tfidf')
self.load_model('word2vec')
self.load_model('bert')
# self.load_model('scibert')
# self.load_model('sbert')
self.load_model('clustered sbert')
self.iface.launch()
def load_data(self, dataset):
train_data = dataset["train"]
for item in train_data.select(range(len(train_data))):
text = item["text"]
if not text or len(text.strip()) < 10:
continue
lines = text.splitlines()
title_lines = []
found_arxiv = False
arxiv_id = None
for line in lines:
line_strip = line.strip()
if not found_arxiv and line_strip.lower().startswith("arxiv:"):
found_arxiv = True
match = re.search(r'arxiv:\d{4}\.\d{4,5}v\d', line_strip, flags=re.IGNORECASE)
if match:
arxiv_id = match.group(0).lower()
elif not found_arxiv:
title_lines.append(line_strip)
else:
if line_strip.lower().startswith("abstract"):
break
title = " ".join(title_lines).strip()
self.raw_texts.append(text.strip())
self.titles.append(title)
self.documents.append(text.strip())
self.arxiv_ids.append(arxiv_id)
def plot_dense(self, embedding, pca, results_indices):
all_indices = list(set(results_indices) | set(range(min(5000, embedding.shape[0]))))
all_data = embedding[all_indices]
pca.fit(all_data)
reduced_data = pca.transform(embedding[:5000])
reduced_results_points = pca.transform(embedding[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
query_point = pca.transform(self.query_encoding) if self.query_encoding is not None and self.query_encoding.shape[0] > 0 else np.empty((0, 3))
return reduced_data, reduced_results_points, query_point
def plot_3d_embeddings(self):
# Example: plot random points, replace with your embeddings
pca = PCA(n_components=3)
results_indices = [i[0] for i in self.last_results]
if self.embedding == "tfidf":
all_indices = list(set(results_indices) | set(range(min(5000, self.tfidf_matrix.shape[0]))))
all_data = self.tfidf_matrix[all_indices].toarray()
pca.fit(all_data)
reduced_data = pca.transform(self.tfidf_matrix[:5000].toarray())
reduced_results_points = pca.transform(self.tfidf_matrix[results_indices].toarray()) if len(results_indices) > 0 else np.empty((0, 3))
elif self.embedding == "word2vec":
reduced_data, reduced_results_points, query_point = self.plot_dense(self.word2vec_embeddings, pca, results_indices)
elif self.embedding == "bert":
reduced_data, reduced_results_points, query_point = self.plot_dense(self.bert_embeddings, pca, results_indices)
elif self.embedding == "sbert" or self.embedding == "clustered sbert":
reduced_data, reduced_results_points, query_point = self.plot_dense(self.sbert_embedding, pca, results_indices)
if self.embedding == "clustered sbert":
cluster_colors = ["#00b7ff" if i in np.where(self.clusters == self.top_cluster_index)[0] else "#ffffff" for i in range(len(self.documents))]
# elif self.embedding == "scibert":
# reduced_data, reduced_results_points, query_point = self.plot_dense(self.scibert_embeddings, pca, results_indices)
else:
raise ValueError(f"Unsupported embedding type: {self.embedding}")
results_scores = [i[1] for i in self.last_results]
traces = []
trace = go.Scatter3d(
x=reduced_data[:, 0],
y=reduced_data[:, 1],
z=reduced_data[:, 2],
mode='markers',
marker=dict(size=3.5,
color="#ffffff" if self.embedding != "clustered sbert" else cluster_colors,
opacity=0.2),
name='All Documents',
text=[f"<br>: {self.arxiv_ids[i] if self.arxiv_ids[i] else self.documents[i].split()[:10]}" for i in range(len(self.documents))],
hoverinfo='text'
)
traces.append(trace)
layout = go.Layout(
margin=dict(l=0, r=0, b=0, t=0),
scene=dict(
xaxis_title='PCA 1',
yaxis_title='PCA 2',
zaxis_title='PCA 3',
xaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
yaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
zaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
),
paper_bgcolor='black', # Outside the plotting area
plot_bgcolor='black', # Plotting area
font=dict(color='white'), # Axis and legend text
legend=dict(
bgcolor='rgba(0,0,0,0)', # Transparent legend background
bordercolor='rgba(0,0,0,0)', # No border
x=0.01, # Place legend inside plot area (adjust as needed)
y=0.99,
xanchor='left',
yanchor='top'
)
)
if len(reduced_results_points) > 0:
custom_colorscale = [
[0.0, "#00ffea"], # Start color (e.g., bright cyan)
[1.0, "#ffea00"], # End color (e.g., bright yellow)
]
results_trace = go.Scatter3d(
x=reduced_results_points[:, 0],
y=reduced_results_points[:, 1],
z=reduced_results_points[:, 2],
mode='markers',
marker=dict(size=4.25,
color=results_scores,
colorscale=custom_colorscale,
opacity=0.99,
colorbar=dict(
title="Score",
bgcolor='rgba(0,0,0,0)', # <-- Transparent background for colorbar
bordercolor='rgba(0,0,0,0)' # No border
)
),
name='Results',
text=[f"<br>{self.documents[i][:100]}" for i in results_indices],
hoverinfo='text'
)
traces.append(results_trace)
if not self.embedding == "tfidf" and self.query_encoding is not None and self.query_encoding.shape[0] > 0:
query_trace = go.Scatter3d(
x=query_point[:, 0],
y=query_point[:, 1],
z=query_point[:, 2],
mode='markers',
marker=dict(size=5, color='red', opacity=0.8),
name='Query',
text=[f"<br>Query: {self.query}"],
hoverinfo='text'
)
traces.append(query_trace)
fig = go.Figure(data=traces, layout=layout)
return fig
def keyword_match_ranking(self, query, top_n=10):
query_terms = query.lower().split()
query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms]
if not query_indices:
return []
scores = []
for doc_idx in range(self.tfidf_matrix.shape[0]):
doc_vector = self.tfidf_matrix[doc_idx]
doc_score = sum(doc_vector[0, i] for i in query_indices)
if doc_score > 0:
scores.append((doc_idx, doc_score))
scores.sort(key=lambda x: x[1], reverse=True)
return scores[:top_n]
def word2vec_search(self, query, top_n=10):
tokens = [word for word in query.split() if word in self.wv_model.key_to_index]
if not tokens:
return []
vectors = np.array([self.wv_model[word] for word in tokens])
query_vec = np.mean(vectors, axis=0).reshape(1, -1)
self.query_encoding = query_vec
sims = cosine_similarity(query_vec, self.word2vec_embeddings).flatten()
top_indices = sims.argsort()[::-1][:top_n]
return [(i, sims[i]) for i in top_indices]
def bert_search(self, query, top_n=10):
with torch.no_grad():
inputs = self.tokenizer((query+' ')*2, return_tensors="pt", truncation=True, max_length=512, padding='max_length')
outputs = self.model(**inputs)
query_vec = outputs.last_hidden_state[:, 0, :].numpy()
self.query_encoding = query_vec
sims = cosine_similarity(query_vec, self.bert_embeddings).flatten()
top_indices = sims.argsort()[::-1][:top_n]
print(f"sim, top_indices: {sims}, {top_indices}")
return [(i, sims[i]) for i in top_indices]
# def scibert_search(self, query, top_n=10):
# with torch.no_grad():
# inputs = self.sci_tokenizer(query, return_tensors="pt", truncation=True, padding=True, max_length=512)
# outputs = self.sci_model(**inputs)
# query_vec = outputs.last_hidden_state[:, 0, :].numpy()
# self.query_encoding = query_vec
# sims = cosine_similarity(query_vec, self.scibert_embeddings).flatten()
# top_indices = sims.argsort()[::-1][:top_n]
# print(f"sim, top_indices: {sims}, {top_indices}")
# return [(i, sims[i]) for i in top_indices]
def sbert_search(self, query, top_n=10):
query_vec = self.sbert_model.encode([query])
self.query_encoding = query_vec
cos_scores = cosine_similarity(query_vec, self.sbert_embedding)[0]
top_k_indices = np.argsort(cos_scores)[-50:][::-1]
candidates = [dataset['train'][int(i)]['text'] for i in top_k_indices]
scores = self.cross_encoder.predict([(query, doc) for doc in candidates])
final_scores = 0.7 * scores + 0.3 * cos_scores[top_k_indices]
top_indices = top_k_indices[final_scores.argsort()[::-1][:top_n]]
print(f"sim, top_indices: {final_scores}, {top_indices}")
return [(top_k_indices[i], final_scores[i]) for i in final_scores.argsort()[::-1][:top_n]]
def clustered_sbert_search(self, query, top_n=10):
query_vec = self.sbert_model.encode([query])
self.query_encoding = query_vec # Store the query encoding for plotting
cos_cluster_scores = cosine_similarity(query_vec, self.cluster_centers)[0] # Get cosine similarity with cluster centers
self.top_cluster_index = np.argmax(cos_cluster_scores) # Get the index of the top cluster
cos_scores = cosine_similarity(query_vec, self.clustered_embeddings[self.top_cluster_index])[0] # Get cosine similarity within the top cluster
top_k_indices = np.argsort(cos_scores)[-50:][::-1] # Get top 50 indices within the top cluster (cluster internal indices)
top_full_dataset_indices = np.where(self.clusters == self.top_cluster_index)[0][top_k_indices] # Get the 50 indices that correspond to the full dataset
candidates = [self.dataset['train'][int(i)]['text'] for i in top_full_dataset_indices] # Get the 50 candidate documents
scores = self.cross_encoder.predict([(query, doc) for doc in candidates]) # Get the 50 cross-encoder scores for the candidates
final_scores = 0.7 * scores + 0.3 * cos_scores[top_k_indices] # Combine the 50 cross-encoder scores with the cosine similarity scores
top_indices = top_k_indices[final_scores.argsort()[::-1][:top_n]] # Get the top N cluster internal indices based on the final scores
top_indices_full = np.where(self.clusters == self.top_cluster_index)[0][top_indices] # Get the top N full dataset indices based on the final scores
print(f"sim, top_indices: {final_scores}, {top_indices}")
return [(i, final_scores[j]) for j, i in enumerate(top_indices_full)]
def model_switch(self, embedding, progress=gr.Progress()):
if self.embedding != embedding:
old_embedding = self.embedding
print(f"Switching model to {embedding}")
self.load_model(embedding)
print(f"Loaded {embedding} model")
self.embedding = embedding
if old_embedding == "tfidf":
del self.tfidf_matrix
del self.feature_names
if old_embedding == "word2vec":
del self.word2vec_embeddings
del self.wv_model
if old_embedding == "bert":
del self.bert_embeddings
del self.tokenizer
del self.model
if old_embedding == "scibert":
del self.scibert_embeddings
del self.sci_tokenizer
del self.sci_model
if old_embedding == "sbert":
del self.sbert_model
del self.sbert_embedding
del self.cross_encoder
print(f"old embedding removed")
if hasattr(self, "query") and self.query:
return self.search_function(self.query, self.embedding)
else:
return "" # Or a message like "Model switched. Please enter a query."
return gr.update() # No change if embedding is the same
def load_model(self, embedding):
self.embedding = embedding
if self.embedding == "tfidf":
self.tfidf_matrix = load_npz("TF-IDF embeddings/tfidf_matrix_train.npz")
with open("TF-IDF embeddings/feature_names.txt", "r") as f:
self.feature_names = [line.strip() for line in f.readlines()]
elif self.embedding == "word2vec":
# Use trimmed model here
self.word2vec_embeddings = np.load("Word2Vec embeddings/word2vec_embedding.npz")["word2vec_embedding"]
self.wv_model = KeyedVectors.load("models/word2vec-trimmed.model")
elif self.embedding == "bert":
self.bert_embeddings = np.load("BERT embeddings/bert_embedding.npz")["bert_embedding"]
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model = BertModel.from_pretrained('bert-base-uncased')
self.model.eval()
# elif self.embedding == "scibert":
# self.scibert_embeddings = np.load("SciBERT_embeddings/scibert_embedding.npz")["bert_embedding"]
# self.sci_tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
# self.sci_model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
# self.sci_model.eval()
elif self.embedding == "sbert" or self.embedding == "clustered sbert":
self.sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
self.sbert_embedding = np.load("BERT embeddings/sbert_embedding.npz")["sbert_embedding"]
# self.cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")
self.cross_encoder = CrossEncoder("cross-encoder/ms-marco-TinyBERT-L-2-v2")
if self.embedding == "clustered sbert":
self.clusters = pd.read_csv(f'raf_clusters/cluster_labels_sbert.csv')['cluster_label'].values
self.cluster_centers = pd.read_csv(f'BERT embeddings/sbert_cluster_centers.csv').values
self.clustered_embeddings = [self.sbert_embedding[self.clusters == i] for i in np.unique(self.clusters)]
else:
raise ValueError(f"Unsupported embedding type: {self.embedding}")
def snippet_before_abstract(self, text):
pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE)
match = pattern.search(text)
if match:
return text[:match.start()].strip() if match.start() < 1000 else text[:100].strip()
else:
return text[:300].strip()
def set_embedding(self, embedding):
self.embedding = embedding
def search_function(self, query, embedding, progress=gr.Progress()):
self.set_embedding(embedding)
self.query = query
query = query.encode().decode('unicode_escape') # Interpret escape sequences
search_methods = {
"tfidf": self.keyword_match_ranking,
"word2vec": self.word2vec_search,
"bert": self.bert_search,
# "scibert": self.scibert_search, # Uncomment if implemented
"sbert": self.sbert_search,
"clustered sbert": self.clustered_sbert_search,
}
results = search_methods.get(self.embedding, lambda q: [])(query)
if not results:
self.last_results = []
return "No results found."
if results:
self.last_results = results
output = ""
display_rank = 1
for idx, score in results:
if not self.arxiv_ids[idx]:
output += f"### Document {display_rank}\n"
output += f"<pre>{self.documents[idx][:200]}</pre>\n\n"
else:
link = f"https://arxiv.org/abs/{self.arxiv_ids[idx].replace('arxiv:', '')}"
snippet = self.snippet_before_abstract(self.documents[idx]).replace('\n', '<br>')
output += f"### Document {display_rank}\n"
output += f"[arXiv Link]({link})\n\n"
output += f"<pre>{snippet}</pre>\n\n---\n"
display_rank += 1
return output
if __name__ == "__main__":
dataset = load_dataset("ccdv/arxiv-classification", "no_ref") # replace with your dataset
search_engine = ArxivSearch(dataset)
search_engine.iface.launch() |