Spaces:
Build error
Build error
File size: 5,422 Bytes
7abab37 900c0ad 71227fd 7abab37 71227fd 900c0ad cc89531 f076a08 7abab37 71227fd cc89531 71227fd f076a08 cc89531 71227fd f076a08 cc89531 f076a08 cc89531 f076a08 eacbd49 7abab37 eacbd49 7abab37 23711c4 eacbd49 7abab37 23711c4 7abab37 23711c4 cc89531 92a085a eacbd49 92a085a 7abab37 900c0ad cc89531 92a085a 7abab37 f076a08 7abab37 f076a08 7abab37 1a09a89 7abab37 1a09a89 7abab37 92a085a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
def initialize_session_state():
if 'data' not in st.session_state:
st.session_state.data = None
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'slicers' not in st.session_state:
st.session_state.slicers = {}
if 'x_var' not in st.session_state:
st.session_state.x_var = None
if 'y_var' not in st.session_state:
st.session_state.y_var = None
if 'analysis_performed' not in st.session_state:
st.session_state.analysis_performed = False
def create_slicers(data):
categorical_columns = data.select_dtypes(include=['object', 'category']).columns
for col in categorical_columns:
if data[col].nunique() <= 10: # κ³ μ κ°μ΄ 10κ° μ΄νμΈ κ²½μ°μλ§ μ¬λΌμ΄μ μμ±
if col not in st.session_state.slicers:
st.session_state.slicers[col] = sorted(data[col].unique())
st.session_state.slicers[col] = st.multiselect(
f"{col} μ ν",
options=sorted(data[col].unique()),
default=st.session_state.slicers[col]
)
def apply_slicers(data):
for col, selected_values in st.session_state.slicers.items():
if selected_values:
data = data[data[col].isin(selected_values)]
return data
def perform_analysis(data):
st.header("νμμ λ°μ΄ν° λΆμ")
# μ¬λΌμ΄μ μμ± λ° μ μ©
create_slicers(data)
filtered_data = apply_slicers(data)
# μμ½ ν΅κ³
st.write("μμ½ ν΅κ³:")
st.write(filtered_data.describe())
# μκ΄κ΄κ³ ννΈλ§΅
st.write("μκ΄κ΄κ³ ννΈλ§΅:")
numeric_data = filtered_data.select_dtypes(include=['float64', 'int64'])
if not numeric_data.empty:
fig = px.imshow(numeric_data.corr(), color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
fig.update_layout(title='μκ΄κ΄κ³ ννΈλ§΅')
st.plotly_chart(fig)
else:
st.write("μκ΄κ΄κ³ ννΈλ§΅μ 그릴 μ μλ μ«μν μ΄μ΄ μμ΅λλ€.")
# μ¬μ©μκ° μ νν λ λ³μμ λν μ°μ λ λ° νκ· λΆμ
st.subheader("λ λ³μ κ°μ κ΄κ³ λΆμ")
numeric_columns = filtered_data.select_dtypes(include=['float64', 'int64']).columns
st.session_state.x_var = st.selectbox("XμΆ λ³μ μ ν", options=numeric_columns, key='x_var_select', index=numeric_columns.get_loc(st.session_state.x_var) if st.session_state.x_var in numeric_columns else 0)
y_options = [col for col in numeric_columns if col != st.session_state.x_var]
st.session_state.y_var = st.selectbox("YμΆ λ³μ μ ν", options=y_options, key='y_var_select', index=y_options.index(st.session_state.y_var) if st.session_state.y_var in y_options else 0)
if st.session_state.x_var and st.session_state.y_var:
fig = px.scatter(filtered_data, x=st.session_state.x_var, y=st.session_state.y_var, color='λ°' if 'λ°' in filtered_data.columns else None)
# νκ·μ μΆκ°
x = filtered_data[st.session_state.x_var]
y = filtered_data[st.session_state.y_var]
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
line_x = np.array([x.min(), x.max()])
line_y = slope * line_x + intercept
fig.add_trace(go.Scatter(x=line_x, y=line_y, mode='lines', name='νκ·μ '))
r_squared = r_value ** 2
fig.update_layout(
title=f'{st.session_state.x_var}μ {st.session_state.y_var}μ κ΄κ³ (R-squared: {r_squared:.4f})',
xaxis_title=st.session_state.x_var,
yaxis_title=st.session_state.y_var,
annotations=[
dict(
x=0.5,
y=1.05,
xref='paper',
yref='paper',
text=f'R-squared: {r_squared:.4f}',
showarrow=False,
)
]
)
st.plotly_chart(fig)
# μΆκ° ν΅κ³ μ 보
st.write(f"μκ΄κ³μ: {r_value:.4f}")
st.write(f"p-value: {p_value:.4f}")
st.write(f"νμ€ μ€μ°¨: {std_err:.4f}")
st.session_state.analysis_performed = True
def main():
st.title("μΈν°λν°λΈ EDA ν΄ν·")
initialize_session_state()
if st.session_state.data is None:
data_input_method = st.radio("λ°μ΄ν° μ
λ ₯ λ°©λ² μ ν:", ("νμΌ μ
λ‘λ", "μλ μ
λ ₯"))
if data_input_method == "νμΌ μ
λ‘λ":
uploaded_file = st.file_uploader("CSV, XLS, λλ XLSX νμΌμ μ ννμΈμ", type=["csv", "xls", "xlsx"])
if uploaded_file is not None:
st.session_state.data = load_data(uploaded_file)
else:
st.session_state.data = manual_data_entry()
if st.session_state.data is not None:
st.subheader("λ°μ΄ν° 미리보기 λ° μμ ")
st.write("λ°μ΄ν°λ₯Ό νμΈνκ³ νμν κ²½μ° μμ νμΈμ:")
edited_data = st.data_editor(st.session_state.data, num_rows="dynamic")
if st.button("λ°μ΄ν° λΆμ μμ") or st.session_state.analysis_performed:
if not st.session_state.analysis_performed:
st.session_state.processed_data = preprocess_data(edited_data)
perform_analysis(st.session_state.processed_data)
if __name__ == "__main__":
main() |