File size: 5,777 Bytes
92a085a
 
f076a08
cc89531
 
92a085a
f076a08
b0b116f
cc89531
 
 
1a09a89
7b713b3
1a09a89
7b713b3
1a09a89
 
 
 
 
f076a08
 
 
 
 
 
 
 
cc89531
f076a08
 
 
 
cc89531
 
f076a08
 
 
d089e25
900c0ad
f076a08
1a09a89
900c0ad
d089e25
f076a08
 
900c0ad
cc89531
900c0ad
cc89531
900c0ad
cc89531
900c0ad
 
cc89531
 
 
900c0ad
cc89531
900c0ad
cc89531
900c0ad
cc89531
900c0ad
 
cc89531
900c0ad
 
 
 
cc89531
900c0ad
cc89531
f076a08
900c0ad
 
 
cc89531
f076a08
cc89531
 
f076a08
 
cc89531
 
f076a08
 
cc89531
 
 
f076a08
cc89531
f076a08
cc89531
 
f076a08
cc89531
 
 
f076a08
cc89531
f076a08
cc89531
 
f076a08
cc89531
 
 
92a085a
cc89531
 
900c0ad
cc89531
 
 
92a085a
cc89531
900c0ad
 
cc89531
900c0ad
0330f36
 
 
 
cc89531
92a085a
900c0ad
cc89531
92a085a
cc89531
92a085a
cc89531
 
f076a08
 
 
 
 
 
 
 
1a09a89
 
 
 
d089e25
1a09a89
 
92a085a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from io import StringIO
import openpyxl
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm

# ν•œκΈ€ 폰트 μ„€μ •
def set_font():
    font_path = "Pretendard-Bold.ttf"  
    fm.fontManager.addfont(font_path)
    plt.rcParams['font.family'] = 'Pretendard-Bold'  # 
    plt.rcParams['axes.unicode_minus'] = False  # λ§ˆμ΄λ„ˆμŠ€ 기호 깨짐 방지

# Streamlit 섀정에 폰트 적용
st.set_option('deprecation.showPyplotGlobalUse', False)
set_font()

def load_data(file):
    file_extension = file.name.split('.')[-1].lower()
    if file_extension == 'csv':
        data = pd.read_csv(file)
    elif file_extension in ['xls', 'xlsx']:
        data = pd.read_excel(file)
    else:
        st.error("μ§€μ›λ˜μ§€ μ•ŠλŠ” 파일 ν˜•μ‹μž…λ‹ˆλ‹€. CSV, XLS, λ˜λŠ” XLSX νŒŒμΌμ„ μ—…λ‘œλ“œν•΄μ£Όμ„Έμš”.")
        return None
    return data

def manual_data_entry():
    st.subheader("μˆ˜λ™ 데이터 μž…λ ₯")
    col_names = st.text_input("μ—΄ 이름을 μ‰Όν‘œλ‘œ κ΅¬λΆ„ν•˜μ—¬ μž…λ ₯ν•˜μ„Έμš”:").split(',')
    col_names = [name.strip() for name in col_names if name.strip()]
    
    if col_names:
        num_rows = st.number_input("초기 ν–‰μ˜ 수λ₯Ό μž…λ ₯ν•˜μ„Έμš”:", min_value=1, value=5)
        data = pd.DataFrame(columns=col_names, index=range(num_rows))
        
        edited_data = st.data_editor(data, num_rows="dynamic")
        
        return edited_data
    return None

def preprocess_data(data):
    st.subheader("데이터 μ „μ²˜λ¦¬")
    
    # 결츑치 처리
    if data.isnull().sum().sum() > 0:
        st.write("결츑치 처리:")
        for column in data.columns:
            if data[column].isnull().sum() > 0:
                method = st.selectbox(f"{column} μ—΄μ˜ 처리 방법 선택:", 
                                      ["제거", "ν‰κ· μœΌλ‘œ λŒ€μ²΄", "μ€‘μ•™κ°’μœΌλ‘œ λŒ€μ²΄", "μ΅œλΉˆκ°’μœΌλ‘œ λŒ€μ²΄"])
                if method == "제거":
                    data = data.dropna(subset=[column])
                elif method == "ν‰κ· μœΌλ‘œ λŒ€μ²΄":
                    data[column].fillna(data[column].mean(), inplace=True)
                elif method == "μ€‘μ•™κ°’μœΌλ‘œ λŒ€μ²΄":
                    data[column].fillna(data[column].median(), inplace=True)
                elif method == "μ΅œλΉˆκ°’μœΌλ‘œ λŒ€μ²΄":
                    data[column].fillna(data[column].mode()[0], inplace=True)
    
    # 데이터 νƒ€μž… λ³€ν™˜
    for column in data.columns:
        if data[column].dtype == 'object':
            try:
                data[column] = pd.to_numeric(data[column])
                st.write(f"{column} 열을 μˆ«μžν˜•μœΌλ‘œ λ³€ν™˜ν–ˆμŠ΅λ‹ˆλ‹€.")
            except ValueError:
                st.write(f"{column} 열은 λ²”μ£Όν˜•μœΌλ‘œ μœ μ§€λ©λ‹ˆλ‹€.")
    
    return data

def perform_analysis(data):
    st.header("탐색적 데이터 뢄석")
    
    # μš”μ•½ 톡계
    st.write("μš”μ•½ 톡계:")
    st.write(data.describe())

    # 상관관계 히트맡
    st.write("상관관계 히트맡:")
    numeric_data = data.select_dtypes(include=['float64', 'int64'])
    if not numeric_data.empty:
        fig = px.imshow(numeric_data.corr(), color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
        fig.update_layout(title='상관관계 히트맡')
        st.plotly_chart(fig)
    else:
        st.write("상관관계 νžˆνŠΈλ§΅μ„ 그릴 수 μžˆλŠ” μˆ«μžν˜• 열이 μ—†μŠ΅λ‹ˆλ‹€.")

    # 산점도 ν–‰λ ¬
    st.write("산점도 ν–‰λ ¬:")
    if not numeric_data.empty:
        fig = px.scatter_matrix(numeric_data)
        fig.update_layout(title='산점도 ν–‰λ ¬')
        st.plotly_chart(fig)
    else:
        st.write("산점도 행렬을 그릴 수 μžˆλŠ” μˆ«μžν˜• 열이 μ—†μŠ΅λ‹ˆλ‹€.")

    # νžˆμŠ€ν† κ·Έλž¨
    st.write("νžˆμŠ€ν† κ·Έλž¨:")
    for column in numeric_data.columns:
        fig = px.histogram(data, x=column, marginal='box')
        fig.update_layout(title=f'{column} νžˆμŠ€ν† κ·Έλž¨')
        st.plotly_chart(fig)

    # λ°•μŠ€ν”Œλ‘―
    st.write("λ°•μŠ€ν”Œλ‘―:")
    for column in numeric_data.columns:
        fig = px.box(data, y=column)
        fig.update_layout(title=f'{column} λ°•μŠ€ν”Œλ‘―')
        st.plotly_chart(fig)

    # λ²”μ£Όν˜• λ³€μˆ˜ λ§‰λŒ€ κ·Έλž˜ν”„
    categorical_columns = data.select_dtypes(include=['object']).columns
    if not categorical_columns.empty:
        st.write("λ²”μ£Όν˜• λ³€μˆ˜ λ§‰λŒ€ κ·Έλž˜ν”„:")
        for column in categorical_columns:
            value_counts = data[column].value_counts().reset_index()
            value_counts.columns = ['category', 'count']
            fig = px.bar(value_counts, x='category', y='count', title=f'{column} 뢄포')
            fig.update_layout(xaxis_title=column, yaxis_title='개수')
            st.plotly_chart(fig)

def main():
    st.title("μΈν„°λž™ν‹°λΈŒ EDA νˆ΄ν‚·")

    data_input_method = st.radio("데이터 μž…λ ₯ 방법 선택:", ("파일 μ—…λ‘œλ“œ", "μˆ˜λ™ μž…λ ₯"))
    
    if data_input_method == "파일 μ—…λ‘œλ“œ":
        uploaded_file = st.file_uploader("CSV, XLS, λ˜λŠ” XLSX νŒŒμΌμ„ μ„ νƒν•˜μ„Έμš”", type=["csv", "xls", "xlsx"])
        if uploaded_file is not None:
            data = load_data(uploaded_file)
        else:
            data = None
    else:
        data = manual_data_entry()
    
    if data is not None:
        st.subheader("데이터 미리보기 및 μˆ˜μ •")
        st.write("데이터λ₯Ό ν™•μΈν•˜κ³  ν•„μš”ν•œ 경우 μˆ˜μ •ν•˜μ„Έμš”:")
        edited_data = st.data_editor(data, num_rows="dynamic")
        
        if st.button("데이터 뢄석 μ‹œμž‘"):
            processed_data = preprocess_data(edited_data)
            perform_analysis(processed_data)

if __name__ == "__main__":
    main()