Spaces:
Runtime error
Runtime error
File size: 6,755 Bytes
92a085a f076a08 cc89531 92a085a f076a08 cc89531 23711c4 cc89531 1a09a89 1d927a2 1a09a89 1d927a2 1a09a89 1d927a2 f076a08 cc89531 f076a08 cc89531 f076a08 d089e25 900c0ad f076a08 1a09a89 900c0ad d089e25 f076a08 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 900c0ad cc89531 f076a08 900c0ad 71227fd eacbd49 900c0ad cc89531 f076a08 71227fd cc89531 71227fd f076a08 cc89531 71227fd f076a08 cc89531 f076a08 cc89531 f076a08 eacbd49 23711c4 eacbd49 23711c4 eacbd49 23711c4 cc89531 92a085a eacbd49 92a085a 900c0ad cc89531 92a085a cc89531 92a085a cc89531 f076a08 1a09a89 d089e25 1a09a89 92a085a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from io import StringIO
import openpyxl
import matplotlib.font_manager as fm
from scipy import stats
# νκΈ ν°νΈ μ€μ
def set_font():
font_path = "Pretendard-Bold.ttf" # μ€μ ν°νΈ νμΌ κ²½λ‘λ‘ λ³κ²½ν΄μ£ΌμΈμ
fm.fontManager.addfont(font_path)
return {'font.family': 'Pretendard-Bold', 'axes.unicode_minus': False}
# ν°νΈ μ€μ μ κ°μ Έμ΅λλ€
font_settings = set_font()
def load_data(file):
file_extension = file.name.split('.')[-1].lower()
if file_extension == 'csv':
data = pd.read_csv(file)
elif file_extension in ['xls', 'xlsx']:
data = pd.read_excel(file)
else:
st.error("μ§μλμ§ μλ νμΌ νμμ
λλ€. CSV, XLS, λλ XLSX νμΌμ μ
λ‘λν΄μ£ΌμΈμ.")
return None
return data
def manual_data_entry():
st.subheader("μλ λ°μ΄ν° μ
λ ₯")
col_names = st.text_input("μ΄ μ΄λ¦μ μΌνλ‘ κ΅¬λΆνμ¬ μ
λ ₯νμΈμ:").split(',')
col_names = [name.strip() for name in col_names if name.strip()]
if col_names:
num_rows = st.number_input("μ΄κΈ° νμ μλ₯Ό μ
λ ₯νμΈμ:", min_value=1, value=5)
data = pd.DataFrame(columns=col_names, index=range(num_rows))
edited_data = st.data_editor(data, num_rows="dynamic")
return edited_data
return None
def preprocess_data(data):
st.subheader("λ°μ΄ν° μ μ²λ¦¬")
# κ²°μΈ‘μΉ μ²λ¦¬
if data.isnull().sum().sum() > 0:
st.write("κ²°μΈ‘μΉ μ²λ¦¬:")
for column in data.columns:
if data[column].isnull().sum() > 0:
method = st.selectbox(f"{column} μ΄μ μ²λ¦¬ λ°©λ² μ ν:",
["μ κ±°", "νκ· μΌλ‘ λ체", "μ€μκ°μΌλ‘ λ체", "μ΅λΉκ°μΌλ‘ λ체"])
if method == "μ κ±°":
data = data.dropna(subset=[column])
elif method == "νκ· μΌλ‘ λ체":
data[column].fillna(data[column].mean(), inplace=True)
elif method == "μ€μκ°μΌλ‘ λ체":
data[column].fillna(data[column].median(), inplace=True)
elif method == "μ΅λΉκ°μΌλ‘ λ체":
data[column].fillna(data[column].mode()[0], inplace=True)
# λ°μ΄ν° νμ
λ³ν
for column in data.columns:
if data[column].dtype == 'object':
try:
data[column] = pd.to_numeric(data[column])
st.write(f"{column} μ΄μ μ«μνμΌλ‘ λ³ννμ΅λλ€.")
except ValueError:
st.write(f"{column} μ΄μ λ²μ£ΌνμΌλ‘ μ μ§λ©λλ€.")
return data
def create_slicers(data):
slicers = {}
categorical_columns = data.select_dtypes(include=['object', 'category']).columns
for col in categorical_columns:
if data[col].nunique() <= 10: # κ³ μ κ°μ΄ 10κ° μ΄νμΈ κ²½μ°μλ§ μ¬λΌμ΄μ μμ±
slicers[col] = st.multiselect(f"{col} μ ν", options=sorted(data[col].unique()), default=sorted(data[col].unique()))
return slicers
def apply_slicers(data, slicers):
for col, selected_values in slicers.items():
if selected_values:
data = data[data[col].isin(selected_values)]
return data
def perform_analysis(data):
st.header("νμμ λ°μ΄ν° λΆμ")
# μ¬λΌμ΄μ μμ±
slicers = create_slicers(data)
# μ¬λΌμ΄μ μ μ©
filtered_data = apply_slicers(data, slicers)
# μμ½ ν΅κ³
st.write("μμ½ ν΅κ³:")
st.write(filtered_data.describe())
# μκ΄κ΄κ³ ννΈλ§΅
st.write("μκ΄κ΄κ³ ννΈλ§΅:")
numeric_data = filtered_data.select_dtypes(include=['float64', 'int64'])
if not numeric_data.empty:
fig = px.imshow(numeric_data.corr(), color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
fig.update_layout(title='μκ΄κ΄κ³ ννΈλ§΅')
st.plotly_chart(fig)
else:
st.write("μκ΄κ΄κ³ ννΈλ§΅μ 그릴 μ μλ μ«μν μ΄μ΄ μμ΅λλ€.")
# μ¬μ©μκ° μ νν λ λ³μμ λν μ°μ λ λ° νκ· λΆμ
st.subheader("λ λ³μ κ°μ κ΄κ³ λΆμ")
numeric_columns = filtered_data.select_dtypes(include=['float64', 'int64']).columns
x_var = st.selectbox("XμΆ λ³μ μ ν", options=numeric_columns)
y_var = st.selectbox("YμΆ λ³μ μ ν", options=[col for col in numeric_columns if col != x_var])
if x_var and y_var:
fig = px.scatter(filtered_data, x=x_var, y=y_var, color='λ°' if 'λ°' in filtered_data.columns else None)
# νκ·μ μΆκ°
x = filtered_data[x_var]
y = filtered_data[y_var]
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
line_x = np.array([x.min(), x.max()])
line_y = slope * line_x + intercept
fig.add_trace(go.Scatter(x=line_x, y=line_y, mode='lines', name='νκ·μ '))
r_squared = r_value ** 2
fig.update_layout(
title=f'{x_var}μ {y_var}μ κ΄κ³ (R-squared: {r_squared:.4f})',
xaxis_title=x_var,
yaxis_title=y_var,
annotations=[
dict(
x=0.5,
y=1.05,
xref='paper',
yref='paper',
text=f'R-squared: {r_squared:.4f}',
showarrow=False,
)
]
)
st.plotly_chart(fig)
# μΆκ° ν΅κ³ μ 보
st.write(f"μκ΄κ³μ: {r_value:.4f}")
st.write(f"p-value: {p_value:.4f}")
st.write(f"νμ€ μ€μ°¨: {std_err:.4f}")
def main():
st.title("μΈν°λν°λΈ EDA ν΄ν·")
data_input_method = st.radio("λ°μ΄ν° μ
λ ₯ λ°©λ² μ ν:", ("νμΌ μ
λ‘λ", "μλ μ
λ ₯"))
if data_input_method == "νμΌ μ
λ‘λ":
uploaded_file = st.file_uploader("CSV, XLS, λλ XLSX νμΌμ μ ννμΈμ", type=["csv", "xls", "xlsx"])
if uploaded_file is not None:
data = load_data(uploaded_file)
else:
data = None
else:
data = manual_data_entry()
if data is not None:
st.subheader("λ°μ΄ν° 미리보기 λ° μμ ")
st.write("λ°μ΄ν°λ₯Ό νμΈνκ³ νμν κ²½μ° μμ νμΈμ:")
edited_data = st.data_editor(data, num_rows="dynamic")
if st.button("λ°μ΄ν° λΆμ μμ"):
processed_data = preprocess_data(edited_data)
perform_analysis(processed_data)
if __name__ == "__main__":
main() |