Spaces:
Running
Running
import gradio as gr | |
import torch | |
import yt_dlp | |
import os | |
import subprocess | |
import json | |
import time | |
import langdetect | |
import uuid | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
# Load Hugging Face Token | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
print("Starting the program...") | |
model_path = "Qwen/Qwen2.5-7B-Instruct" | |
# **Efficient Model Loading** | |
bnb_config = BitsAndBytesConfig(load_in_8bit=True) # Use 8-bit precision to reduce memory usage | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
quantization_config=bnb_config, # Load in 8-bit to save memory | |
trust_remote_code=True | |
).to(device).eval() | |
print("Model successfully loaded.") | |
def generate_unique_filename(extension): | |
return f"{uuid.uuid4()}{extension}" | |
def cleanup_files(*files): | |
for file in files: | |
if file and os.path.exists(file): | |
os.remove(file) | |
print(f"Removed file: {file}") | |
def download_youtube_audio(url): | |
"""Downloads audio from a YouTube video and converts it to WAV format.""" | |
print(f"Downloading audio from YouTube: {url}") | |
output_path = generate_unique_filename(".wav") | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'wav', | |
'preferredquality': '192', | |
}], | |
'outtmpl': output_path, | |
} | |
try: | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([url]) | |
if os.path.exists(output_path + ".wav"): | |
os.rename(output_path + ".wav", output_path) # Ensure correct naming | |
except Exception as e: | |
return f"Error downloading audio: {str(e)}" | |
return output_path if os.path.exists(output_path) else "Download Failed" | |
def transcribe_audio(file_path): | |
"""Transcribes audio using `insanely-fast-whisper` and handles large files efficiently.""" | |
print(f"Starting transcription of file: {file_path}") | |
temp_audio = None | |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): | |
print("Video file detected. Extracting audio using ffmpeg...") | |
temp_audio = generate_unique_filename(".wav") | |
command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio] | |
subprocess.run(command, check=True) | |
file_path = temp_audio # Use extracted audio file | |
output_file = generate_unique_filename(".json") | |
command = [ | |
"insanely-fast-whisper", | |
"--file-name", file_path, | |
"--device-id", "0", | |
"--model-name", "openai/whisper-large-v3", | |
"--task", "transcribe", | |
"--timestamp", "chunk", | |
"--transcript-path", output_file | |
] | |
try: | |
subprocess.run(command, check=True) | |
except Exception as e: | |
return f"Error in transcription: {str(e)}" | |
# Process the JSON file in chunks to avoid memory overflow | |
result = [] | |
try: | |
with open(output_file, "r") as f: | |
for line in f: | |
chunk = json.loads(line.strip()) # Read JSON line by line | |
result.append(chunk.get("text", "")) | |
except Exception as e: | |
return f"Error reading transcription file: {str(e)}" | |
cleanup_files(output_file) | |
if temp_audio: | |
cleanup_files(temp_audio) | |
return " ".join(result)[:500000] # Limit transcription size | |
def generate_summary_stream(transcription): | |
"""Summarizes the transcription efficiently to avoid memory overflow.""" | |
detected_language = langdetect.detect(transcription[:1000]) # Detect using a smaller portion | |
# Use smaller chunks for processing | |
chunk_size = 2000 | |
transcript_chunks = [transcription[i:i+chunk_size] for i in range(0, len(transcription), chunk_size)] | |
summary_result = [] | |
for chunk in transcript_chunks[:3]: # Process only the first 3 chunks to avoid OOM | |
prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:\n{chunk}""" | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) | |
output_ids = model.generate(input_ids, max_length=300) # Limit output size | |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
summary_result.append(response) | |
return "\n\n".join(summary_result) | |
def process_youtube(url): | |
"""Handles YouTube video processing: downloads audio, transcribes it, and cleans up.""" | |
if not url: | |
return "Please enter a YouTube URL.", None | |
audio_file = download_youtube_audio(url) | |
if "Error" in audio_file or audio_file == "Download Failed": | |
return audio_file, None | |
transcription = transcribe_audio(audio_file) | |
cleanup_files(audio_file) # Clean up the downloaded file | |
return transcription, None | |
def process_uploaded_video(video_path): | |
"""Processes uploaded video file for transcription.""" | |
transcription = transcribe_audio(video_path) | |
return transcription, None | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# 🎥 Video Transcription and Smart Summary | |
Upload a video or provide a YouTube link to get a transcription and AI-generated summary. | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("📤 Video Upload"): | |
video_input = gr.Video() | |
video_button = gr.Button("🚀 Process Video") | |
with gr.TabItem("🔗 YouTube Link"): | |
url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...") | |
url_button = gr.Button("🚀 Process URL") | |
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True) | |
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True) | |
summary_button = gr.Button("📝 Generate Summary") | |
video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output]) | |
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output]) | |
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output]) | |
demo.launch() | |