Spaces:
Running
Running
""" EfficientViT (by MIT Song Han's Lab) | |
Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition` | |
- https://arxiv.org/abs/2205.14756 | |
Code adapted from timm, https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/efficientvit_mit.py | |
Original code (that timm adapted from) at https://github.com/mit-han-lab/efficientvit | |
""" | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from transformers.activations import ACT2FN | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer | |
from transformers.utils import ModelOutput | |
from surya.model.recognition.config import DonutSwinConfig | |
_EXPECTED_OUTPUT_SHAPE = [1, 49, 1024] | |
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin | |
class DonutSwinEncoderOutput(ModelOutput): | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class DonutSwinModelOutput(ModelOutput): | |
last_hidden_state: torch.FloatTensor = None | |
# Copied from transformers.models.swin.modeling_swin.window_partition | |
def window_partition(input_feature, window_size): | |
""" | |
Partitions the given input into windows. | |
""" | |
batch_size, height, width, num_channels = input_feature.shape | |
input_feature = input_feature.view( | |
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels | |
) | |
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) | |
return windows | |
# Copied from transformers.models.swin.modeling_swin.window_reverse | |
def window_reverse(windows, window_size, height, width): | |
""" | |
Merges windows to produce higher resolution features. | |
""" | |
num_channels = windows.shape[-1] | |
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) | |
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) | |
return windows | |
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin | |
class DonutSwinEmbeddings(nn.Module): | |
""" | |
Construct the patch and position embeddings. Optionally, also the mask token. | |
""" | |
def __init__(self, config, use_mask_token=False): | |
super().__init__() | |
self.patch_embeddings = DonutSwinPatchEmbeddings(config) | |
num_patches = self.patch_embeddings.num_patches | |
self.patch_grid = self.patch_embeddings.grid_size | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None | |
if config.use_absolute_embeddings: | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) | |
else: | |
self.position_embeddings = None | |
self.norm = nn.LayerNorm(config.embed_dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
""" | |
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
resolution images. | |
Source: | |
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
""" | |
num_patches = embeddings.shape[1] - 1 | |
num_positions = self.position_embeddings.shape[1] - 1 | |
if num_patches == num_positions and height == width: | |
return self.position_embeddings | |
class_pos_embed = self.position_embeddings[:, 0] | |
patch_pos_embed = self.position_embeddings[:, 1:] | |
dim = embeddings.shape[-1] | |
h0 = height // self.config.patch_size | |
w0 = width // self.config.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
h0, w0 = h0 + 0.1, w0 + 0.1 | |
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) | |
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed, | |
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), | |
mode="bicubic", | |
align_corners=False, | |
) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor], | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
interpolate_pos_encoding: bool = False, | |
) -> Tuple[torch.Tensor]: | |
_, num_channels, height, width = pixel_values.shape | |
embeddings, output_dimensions = self.patch_embeddings(pixel_values) | |
embeddings = self.norm(embeddings) | |
batch_size, seq_len, _ = embeddings.size() | |
if bool_masked_pos is not None: | |
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) | |
# replace the masked visual tokens by mask_tokens | |
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) | |
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask | |
if self.position_embeddings is not None: | |
if interpolate_pos_encoding: | |
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) | |
else: | |
embeddings = embeddings + self.position_embeddings[:, :seq_len] | |
embeddings = self.dropout(embeddings) | |
return embeddings, output_dimensions | |
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->DonutSwin | |
class DonutSwinPatchEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
Transformer. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
image_size, patch_size = config.image_size, config.patch_size | |
num_channels, hidden_size = config.num_channels, config.embed_dim | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) | |
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
def maybe_pad(self, pixel_values, height, width): | |
if width % self.patch_size[1] != 0: | |
pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) | |
pixel_values = nn.functional.pad(pixel_values, pad_values) | |
if height % self.patch_size[0] != 0: | |
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) | |
pixel_values = nn.functional.pad(pixel_values, pad_values) | |
return pixel_values | |
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: | |
_, num_channels, height, width = pixel_values.shape | |
# pad the input to be divisible by self.patch_size, if needed | |
pixel_values = self.maybe_pad(pixel_values, height, width) | |
embeddings = self.projection(pixel_values) | |
_, _, height, width = embeddings.shape | |
output_dimensions = (height, width) | |
embeddings = embeddings.flatten(2).transpose(1, 2) | |
return embeddings, output_dimensions | |
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging | |
class DonutSwinPatchMerging(nn.Module): | |
""" | |
Patch Merging Layer. | |
Args: | |
input_resolution (`Tuple[int]`): | |
Resolution of input feature. | |
dim (`int`): | |
Number of input channels. | |
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): | |
Normalization layer class. | |
""" | |
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def maybe_pad(self, input_feature, height, width): | |
should_pad = (height % 2 == 1) or (width % 2 == 1) | |
if should_pad: | |
pad_values = (0, 0, 0, width % 2, 0, height % 2) | |
input_feature = nn.functional.pad(input_feature, pad_values) | |
return input_feature | |
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: | |
height, width = input_dimensions | |
# `dim` is height * width | |
batch_size, dim, num_channels = input_feature.shape | |
input_feature = input_feature.view(batch_size, height, width, num_channels) | |
# pad input to be disible by width and height, if needed | |
input_feature = self.maybe_pad(input_feature, height, width) | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_0 = input_feature[:, 0::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_1 = input_feature[:, 1::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_2 = input_feature[:, 0::2, 1::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_3 = input_feature[:, 1::2, 1::2, :] | |
# batch_size height/2 width/2 4*num_channels | |
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) | |
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C | |
input_feature = self.norm(input_feature) | |
input_feature = self.reduction(input_feature) | |
return input_feature | |
# Copied from transformers.models.beit.modeling_beit.drop_path | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
# Copied from transformers.models.swin.modeling_swin.SwinDropPath | |
class DonutSwinDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->DonutSwin | |
class DonutSwinSelfAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, num_kv_heads, window_size): | |
super().__init__() | |
if dim % num_heads != 0: | |
raise ValueError( | |
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" | |
) | |
self.num_attention_heads = num_heads | |
self.num_kv_heads = num_kv_heads | |
self.kv_repeats = self.num_attention_heads // self.num_kv_heads | |
self.attention_head_size = int(dim / num_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.kv_head_size = self.num_kv_heads * self.attention_head_size | |
self.window_size = ( | |
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) | |
) | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) | |
) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
relative_coords[:, :, 0] += self.window_size[0] - 1 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(self.all_head_size, self.kv_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(self.all_head_size, self.kv_head_size, bias=config.qkv_bias) | |
self.dropout_p = config.attention_probs_dropout_prob | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def transpose_kv_for_scores(self, x, repeats): | |
new_x_shape = x.size()[:-1] + (self.num_kv_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
x = x.repeat(1, 1, repeats, 1) # repeat the values for each key-value head to match query dim | |
return x.permute(0, 2, 1, 3).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
batch_size, dim, num_channels = hidden_states.shape | |
mixed_query_layer = self.query(hidden_states) | |
# Final is (batch_size, num_attention_heads, seq_len, attention_head_size) | |
key_layer = self.transpose_kv_for_scores(self.key(hidden_states), self.kv_repeats) | |
value_layer = self.transpose_kv_for_scores(self.value(hidden_states), self.kv_repeats) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] | |
relative_position_bias = relative_position_bias.view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 | |
) | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0) | |
if attention_mask is None: | |
attention_mask = relative_position_bias | |
else: | |
mask_shape = attention_mask.shape[0] | |
repeat_count = (batch_size // mask_shape) | |
attention_mask = attention_mask.repeat(repeat_count, 1, 1).unsqueeze(1) | |
attention_mask = attention_mask + relative_position_bias | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_layer.contiguous(), | |
key_layer.contiguous(), | |
value_layer.contiguous(), | |
attn_mask=attention_mask, | |
dropout_p=self.dropout_p if self.training else 0.0, | |
scale=self.attention_head_size**-0.5, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(batch_size, dim, num_channels) | |
outputs = (attn_output,) | |
return outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput | |
class DonutSwinSelfOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, dim) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin | |
class DonutSwinAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, num_kv_heads, window_size): | |
super().__init__() | |
self.self = DonutSwinSelfAttention(config, dim, num_heads, num_kv_heads, window_size) | |
self.output = DonutSwinSelfOutput(config, dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate | |
class DonutSwinIntermediate(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinOutput | |
class DonutSwinOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin | |
class DonutSwinLayer(nn.Module): | |
def __init__(self, config, dim, input_resolution, num_heads, num_kv_heads, shift_size=0): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.shift_size = shift_size | |
self.window_size = config.window_size | |
self.input_resolution = input_resolution | |
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.attention = DonutSwinAttention(config, dim, num_heads, num_kv_heads, window_size=self.window_size) | |
self.drop_path = DonutSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() | |
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.intermediate = DonutSwinIntermediate(config, dim) | |
self.output = DonutSwinOutput(config, dim) | |
def set_shift_and_window_size(self, input_resolution): | |
if min(input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = int(0) | |
self.window_size = ( | |
torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution) | |
) | |
def get_attn_mask(self, height, width, dtype, device): | |
if self.shift_size > 0: | |
# calculate attention mask for SW-MSA | |
img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device) | |
height_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
width_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
count = 0 | |
for height_slice in height_slices: | |
for width_slice in width_slices: | |
img_mask[:, height_slice, width_slice, :] = count | |
count += 1 | |
mask_windows = window_partition(img_mask, self.window_size) | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
return attn_mask | |
def maybe_pad(self, hidden_states, height, width): | |
pad_right = (self.window_size - width % self.window_size) % self.window_size | |
pad_bottom = (self.window_size - height % self.window_size) % self.window_size | |
pad_values = (0, 0, 0, pad_right, 0, pad_bottom) | |
hidden_states = nn.functional.pad(hidden_states, pad_values) | |
return hidden_states, pad_values | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if not always_partition: | |
self.set_shift_and_window_size(input_dimensions) | |
else: | |
pass | |
height, width = input_dimensions | |
batch_size, _, channels = hidden_states.size() | |
shortcut = hidden_states | |
hidden_states = self.layernorm_before(hidden_states) | |
hidden_states = hidden_states.view(batch_size, height, width, channels) | |
# pad hidden_states to multiples of window size | |
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) | |
_, height_pad, width_pad, _ = hidden_states.shape | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_hidden_states = hidden_states | |
# partition windows | |
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) | |
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) | |
attn_mask = self.get_attn_mask( | |
height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device | |
) | |
attention_outputs = self.attention( | |
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions | |
) | |
attention_output = attention_outputs[0] | |
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) | |
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
attention_windows = shifted_windows | |
was_padded = pad_values[3] > 0 or pad_values[5] > 0 | |
if was_padded: | |
attention_windows = attention_windows[:, :height, :width, :].contiguous() | |
attention_windows = attention_windows.view(batch_size, height * width, channels) | |
hidden_states = shortcut + self.drop_path(attention_windows) | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
layer_output = hidden_states + self.output(layer_output) | |
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) | |
return layer_outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin | |
class DonutSwinStage(nn.Module): | |
def __init__(self, config, dim, input_resolution, depth, num_heads, num_kv_heads, drop_path, downsample): | |
super().__init__() | |
self.config = config | |
self.dim = dim | |
self.blocks = nn.ModuleList( | |
[ | |
DonutSwinLayer( | |
config=config, | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
num_kv_heads=num_kv_heads, | |
shift_size=0 if (i % 2 == 0) else config.window_size // 2, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) | |
else: | |
self.downsample = None | |
self.pointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
height, width = input_dimensions | |
for i, layer_module in enumerate(self.blocks): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
layer_outputs = layer_module( | |
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition | |
) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = hidden_states | |
if self.downsample is not None: | |
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 | |
output_dimensions = (height, width, height_downsampled, width_downsampled) | |
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) | |
else: | |
output_dimensions = (height, width, height, width) | |
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) | |
if output_attentions: | |
stage_outputs += layer_outputs[1:] | |
return stage_outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin | |
class DonutSwinEncoder(nn.Module): | |
def __init__(self, config, grid_size): | |
super().__init__() | |
self.num_layers = len(config.depths) | |
self.config = config | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] | |
self.layers = nn.ModuleList( | |
[ | |
DonutSwinStage( | |
config=config, | |
dim=int(config.embed_dim * 2**i_layer), | |
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), | |
depth=config.depths[i_layer], | |
num_heads=config.num_heads[i_layer], | |
num_kv_heads=config.num_kv_heads[i_layer], | |
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], | |
downsample=DonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None, | |
) | |
for i_layer in range(self.num_layers) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
output_hidden_states_before_downsampling: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, DonutSwinEncoderOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_reshaped_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if output_hidden_states: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange b (h w) c -> b c h w | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
for i, layer_module in enumerate(self.layers): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
input_dimensions, | |
layer_head_mask, | |
output_attentions, | |
always_partition, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition | |
) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = layer_outputs[1] | |
output_dimensions = layer_outputs[2] | |
input_dimensions = (output_dimensions[-2], output_dimensions[-1]) | |
if output_hidden_states and output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states_before_downsampling.shape | |
# rearrange b (h w) c -> b c h w | |
# here we use the original (not downsampled) height and width | |
reshaped_hidden_state = hidden_states_before_downsampling.view( | |
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size | |
) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states_before_downsampling,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
elif output_hidden_states and not output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange b (h w) c -> b c h w | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
if output_attentions: | |
all_self_attentions += layer_outputs[3:] | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return DonutSwinEncoderOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
reshaped_hidden_states=all_reshaped_hidden_states, | |
) | |
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->DonutSwin | |
class DonutSwinPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DonutSwinConfig | |
base_model_prefix = "swin" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["DonutSwinStage"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class DonutSwinModel(DonutSwinPreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True, use_mask_token=False): | |
super().__init__(config) | |
self.config = config | |
self.num_layers = len(config.depths) | |
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) | |
self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token) | |
self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid) | |
self.position_embeddings = nn.Parameter(torch.zeros(1, config.encoder_length, config.hidden_size)) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, DonutSwinModelOutput]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, len(self.config.depths)) | |
embedding_output, input_dimensions = self.embeddings( | |
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
input_dimensions, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state += self.position_embeddings[:, :last_hidden_state.size(1), :] | |
return DonutSwinModelOutput( | |
last_hidden_state=last_hidden_state, | |
) |