Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Run the following command to start the demo: | |
python demo_video.py \ | |
--cfg-path /remote-home/share/jiaqitang/Hawk_Ours/configs/eval_configs/eval.yaml \ | |
--model_type llama_v2 \ | |
--gpu-id 0 | |
""" | |
import requests | |
import argparse | |
import os | |
import random | |
import subprocess | |
import sys | |
import io | |
import spaces | |
subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"]) | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import gradio as gr | |
from hawk.common.config import Config | |
from hawk.common.dist_utils import get_rank | |
from hawk.common.registry import registry | |
from hawk.conversation.conversation_video import Chat, Conversation, default_conversation, SeparatorStyle,conv_llava_llama_2 | |
import decord | |
decord.bridge.set_bridge('torch') | |
#%% | |
# imports modules for registration | |
from hawk.datasets.builders import * | |
from hawk.models import * | |
from hawk.processors import * | |
from hawk.runners import * | |
from hawk.tasks import * | |
import time | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--cfg-path", required=False, default='./configs/eval_configs/eval.yaml', help="path to configuration file.") | |
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") | |
parser.add_argument("--model_type", type=str, default='llama_v2', help="The type of LLM") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
print('Initializing Chat') | |
args = parse_args() | |
cfg = Config(args) | |
model_config = cfg.model_cfg | |
model_config.device_8bit = args.gpu_id | |
model_cls = registry.get_model_class(model_config.arch) | |
# model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) | |
model = model_cls.from_config(model_config).to('cuda') | |
model.eval() | |
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
# chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) | |
chat = Chat(model, vis_processor, device='cuda') | |
print('Initialization Finished') | |
have_video = 0 | |
# ======================================== | |
# Gradio Setting | |
# ======================================== | |
def gradio_reset(chat_state, img_list): | |
global have_video | |
have_video = 0 | |
if chat_state is not None: | |
chat_state.messages = [] | |
if img_list is not None: | |
img_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list | |
def upload_imgorvideo(gr_video, text_input, chat_state, chatbot): | |
# if args.model_type == 'vicuna': | |
# chat_state = default_conversation.copy() | |
# else: | |
chat_state = conv_llava_llama_2.copy() | |
if gr_video is None: | |
return None, None, None, gr.update(interactive=True), chat_state, None | |
# elif gr_img is not None and gr_video is None: | |
# print(gr_img) | |
# chatbot = chatbot + [((gr_img,), None)] | |
# chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail." | |
# img_list = [] | |
# llm_message = chat.upload_img(gr_img, chat_state, img_list) | |
# return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot | |
elif gr_video is not None: | |
print(gr_video) | |
chatbot = chatbot + [((gr_video,), None)] | |
chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail." | |
img_list = [] | |
#llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list) | |
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot | |
# else: | |
# # img_list = [] | |
# return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot | |
def gradio_ask(user_message, chatbot, chat_state): | |
if len(user_message) == 0: | |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
chat.ask(user_message, chat_state) | |
chatbot = chatbot + [[user_message, None]] | |
return '', chatbot, chat_state | |
def gradio_answer(video, chatbot, chat_state, img_list, num_beams, temperature): | |
global have_video | |
if have_video == 0: | |
llm_message = chat.upload_video_without_audio(video, chat_state, img_list) | |
have_video = 1 | |
llm_message = chat.answer(conv=chat_state, | |
img_list=img_list, | |
num_beams=num_beams, | |
temperature=temperature, | |
max_new_tokens=300, | |
max_length=2000)[0] | |
chatbot[-1][1] = llm_message | |
print(chat_state.get_prompt()) | |
print(chat_state) | |
return chatbot, chat_state, [] | |
title = """ | |
<div align="center"> | |
<h1>Hawk: Learning to Understand Open-World Video Anomalies</h1> | |
</div> | |
<h5 align="center"> "Have eyes like a Hawk!" </h5> | |
<div style="display: flex; justify-content: center; gap: 0.25rem;"> | |
<a href='https://github.com/jqtangust/hawk'> | |
<img src='https://img.shields.io/badge/Github-Code-success' alt="GitHub Code"> | |
</a> | |
<a href='https://huggingface.co/spaces/Jiaqi-hkust/hawk'> | |
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue' alt="Hugging Face Spaces"> | |
</a> | |
<a href='https://huggingface.co/spaces/Jiaqi-hkust/hawk'> | |
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue' alt="Hugging Face Model"> | |
</a> | |
<a href='https://arxiv.org/pdf/2405.16886'> | |
<img src='https://img.shields.io/badge/Paper-PDF-red' alt="Download Paper"> | |
</a> | |
</div> | |
""" | |
cite_markdown = (""" | |
## Citation | |
The following is a BibTeX reference: | |
``` | |
@inproceedings{atang2024hawk, | |
title = {Hawk: Learning to Understand Open-World Video Anomalies}, | |
author = {Tang, Jiaqi and Lu, Hao and Wu, Ruizheng and Xu, Xiaogang and Ma, Ke and Fang, Cheng and Guo, Bin and Lu, Jiangbo and Chen, Qifeng and Chen, Ying-Cong}, | |
year = {2024}, | |
booktitle = {Neural Information Processing Systems (NeurIPS)} | |
} | |
""") | |
# case_note_upload = (""" | |
# ### We provide some examples at the bottom of the page. Simply click on them to try them out directly. | |
# """) | |
#TODO show examples below | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
video = gr.Video() | |
# image = gr.Image(type="filepath") | |
# gr.Markdown(case_note_upload) | |
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") | |
clear = gr.Button("Restart") | |
num_beams = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=1, | |
step=1, | |
interactive=True, | |
label="beam search numbers)", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
# audio = gr.Checkbox(interactive=True, value=False, label="Audio") | |
with gr.Column(): | |
chat_state = gr.State() | |
img_list = gr.State() | |
chatbot = gr.Chatbot(label='Hawk') | |
text_input = gr.Textbox(label='User', placeholder='Upload your video first and start to chat.', interactive=False) | |
with gr.Column(): | |
gr.Examples(examples=[ | |
[f"figs/examples/explosion2.mp4", "What happened in this video? "], | |
[f"figs/examples/car.mp4", "What is the anomaly for the car in this video? "], | |
], inputs=[video, text_input]) | |
gr.Markdown(cite_markdown) | |
upload_button.click(upload_imgorvideo, [video, text_input, chat_state, chatbot], [video, text_input, upload_button, chat_state, img_list, chatbot]) | |
start_time = time.time() | |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
gradio_answer, [video, chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list] | |
) | |
end_time = time.time() | |
print('Time:', end_time - start_time) | |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, text_input, upload_button, chat_state, img_list], queue=False) | |
demo.launch() | |