Jose Jorge Muñoz
Update app.py
6694498 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from speechbrain.pretrained import EncoderClassifier
import numpy as np
from scipy.spatial.distance import cosine
import librosa
import torchaudio
import gradio as gr
import noisereduce as nr
# Import WavLM components from Hugging Face
from transformers import WavLMForXVector, Wav2Vec2FeatureExtractor
# ---------------- Noise Reduction and Silence Removal Functions ----------------
def reduce_noise(waveform, sample_rate=16000):
"""
Apply a mild noise reduction to the waveform specialized for voice audio.
The parameters are chosen to minimize alteration to the original voice.
Parameters:
waveform (torch.Tensor): Audio tensor of shape (1, n_samples)
sample_rate (int): Sampling rate of the audio
Returns:
torch.Tensor: Denoised audio tensor of shape (1, n_samples)
"""
# Convert tensor to numpy array
waveform_np = waveform.squeeze(0).cpu().numpy()
# Perform noise reduction with conservative parameters.
reduced_noise = nr.reduce_noise(y=waveform_np, sr=sample_rate, prop_decrease=0.5)
return torch.from_numpy(reduced_noise).unsqueeze(0)
def remove_long_silence(waveform, sample_rate=16000, top_db=20, max_silence_length=1.0):
"""
Remove silence segments longer than max_silence_length seconds from the audio.
This function uses librosa.effects.split to detect non-silent intervals and
preserves at most max_silence_length seconds of silence between speech segments.
Parameters:
waveform (torch.Tensor): Audio tensor of shape (1, n_samples)
sample_rate (int): Sampling rate of the audio
top_db (int): The threshold (in decibels) below reference to consider as silence
max_silence_length (float): Maximum allowed silence duration in seconds
Returns:
torch.Tensor: Processed audio tensor with long silences removed
"""
# Convert tensor to numpy array
waveform_np = waveform.squeeze(0).cpu().numpy()
# Identify non-silent intervals
non_silent_intervals = librosa.effects.split(waveform_np, top_db=top_db)
if len(non_silent_intervals) == 0:
return waveform
output_segments = []
max_silence_samples = int(max_silence_length * sample_rate)
# Handle silence before the first non-silent interval
if non_silent_intervals[0][0] > 0:
output_segments.append(waveform_np[:min(non_silent_intervals[0][0], max_silence_samples)])
# Process each non-silent interval and the gap following it
for i, (start, end) in enumerate(non_silent_intervals):
output_segments.append(waveform_np[start:end])
if i < len(non_silent_intervals) - 1:
next_start = non_silent_intervals[i + 1][0]
gap = next_start - end
if gap > max_silence_samples:
output_segments.append(waveform_np[end:end + max_silence_samples])
else:
output_segments.append(waveform_np[end:next_start])
# Handle silence after the last non-silent interval
if non_silent_intervals[-1][1] < len(waveform_np):
gap = len(waveform_np) - non_silent_intervals[-1][1]
if gap > max_silence_samples:
output_segments.append(waveform_np[-max_silence_samples:])
else:
output_segments.append(waveform_np[non_silent_intervals[-1][1]:])
processed_waveform = np.concatenate(output_segments)
return torch.from_numpy(processed_waveform).unsqueeze(0)
# -----------------------------------------------------------------------------
class EnhancedECAPATDNN(nn.Module):
def __init__(self):
super().__init__()
# Primary pretrained model from SpeechBrain (ECAPA-TDNN, trained on VoxCeleb)
self.ecapa = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir="pretrained_models/spkrec-ecapa-voxceleb",
run_opts={"device": "cuda" if torch.cuda.is_available() else "cpu"}
)
# Secondary pretrained model: Microsoft WavLM for Speaker Verification
self.wavlm_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-sv")
self.wavlm = WavLMForXVector.from_pretrained("microsoft/wavlm-base-sv")
self.wavlm.to("cuda" if torch.cuda.is_available() else "cpu")
# Projection layer to map WavLM's embedding (now 512-dim) to 192-dim (to match ECAPA)
self.wavlm_proj = nn.Linear(512, 192)
# Enhanced network: deeper enhancement layers
# Increase dimensionality then reduce back to 192.
self.enhancement = nn.Sequential(
nn.Linear(192, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 192)
)
# Transformer encoder block (with batch_first=True)
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=192, nhead=4, dropout=0.3, batch_first=True),
num_layers=2
)
@torch.no_grad()
def forward(self, x):
"""
x: input waveform tensor of shape (1, T) on device.
"""
# Extract ECAPA embedding
emb_ecapa = self.ecapa.encode_batch(x)
# Prepare input for WavLM:
# x is a waveform tensor of shape (1, T)
waveform_np = x.squeeze(0).cpu().numpy() # shape (T,)
wavlm_inputs = self.wavlm_feature_extractor(waveform_np, sampling_rate=16000, return_tensors="pt")
wavlm_inputs = {k: v.to(x.device) for k, v in wavlm_inputs.items()}
wavlm_out = self.wavlm(**wavlm_inputs)
# Extract embeddings; expected shape (batch, 512)
emb_wavlm = wavlm_out.embeddings
# Project WavLM embedding to 192-dim
emb_wavlm_proj = self.wavlm_proj(emb_wavlm)
# Process ECAPA embedding:
if emb_ecapa.dim() > 2 and emb_ecapa.size(1) > 1:
emb_ecapa_proc = self.transformer(emb_ecapa)
emb_ecapa_proc = emb_ecapa_proc.mean(dim=1)
else:
emb_ecapa_proc = emb_ecapa
# Fuse the two embeddings by averaging
fused = (emb_ecapa_proc + emb_wavlm_proj) / 2
# Apply enhancement layers and normalize
enhanced = self.enhancement(fused)
output = F.normalize(enhanced, p=2, dim=-1)
return output
class ForensicSpeakerVerification:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
self.model = EnhancedECAPATDNN().to(self.device)
self.model.eval()
# Optimize only the enhancement and transformer layers if fine-tuning
trainable_params = list(self.model.enhancement.parameters()) + list(self.model.transformer.parameters())
self.optimizer = torch.optim.AdamW(trainable_params, lr=1e-4)
self.training_embeddings = []
def preprocess_audio(self, file_path, max_duration=10):
try:
waveform, sample_rate = torchaudio.load(file_path)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
max_length = int(16000 * max_duration)
if waveform.shape[1] > max_length:
waveform = waveform[:, :max_length]
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
# Apply noise reduction
waveform = reduce_noise(waveform, sample_rate=16000)
# Remove silences longer than 1 second
waveform = remove_long_silence(waveform, sample_rate=16000)
return waveform.to(self.device)
except Exception as e:
raise ValueError(f"Error preprocessing audio: {str(e)}")
@torch.no_grad()
def extract_embedding(self, file_path, chunk_duration=3, overlap=0.5):
waveform = self.preprocess_audio(file_path)
sample_rate = 16000
chunk_size = int(chunk_duration * sample_rate)
hop_size = int(chunk_size * (1 - overlap))
embeddings = []
if waveform.shape[1] > chunk_size:
for start in range(0, waveform.shape[1] - chunk_size + 1, hop_size):
chunk = waveform[:, start:start+chunk_size]
emb = self.model(chunk)
embeddings.append(emb)
final_emb = torch.mean(torch.cat(embeddings, dim=0), dim=0, keepdim=True)
else:
final_emb = self.model(waveform)
return final_emb.cpu().numpy()
def verify_speaker(self, questioned_audio, suspect_audio, progress=gr.Progress()):
if not questioned_audio or not suspect_audio:
return "⚠️ Please provide both audio samples"
try:
progress(0.2, desc="Processing questioned audio...")
questioned_emb = self.extract_embedding(questioned_audio)
progress(0.4, desc="Processing suspect audio...")
suspect_emb = self.extract_embedding(suspect_audio)
progress(0.6, desc="Computing similarity...")
score = 1 - cosine(questioned_emb.flatten(), suspect_emb.flatten())
# Convert similarity score to probability (percentage)
probability = score * 100
# Create heat bar HTML
heat_bar = f"""
<div style="width:100%; height:30px; position:relative; margin-bottom:10px;">
<div style="width:100%; height:20px; background: linear-gradient(to right, #FF0000, #FFFF00, #00FF00); border-radius:10px;"></div>
<div style="position:absolute; left:{probability}%; top:0; transform:translateX(-50%);">
<div style="width:0; height:0; border-left:8px solid transparent; border-right:8px solid transparent; border-bottom:10px solid black;"></div>
<div style="width:2px; height:20px; background-color:black; margin-left:7px;"></div>
</div>
</div>
"""
# Determine color based on probability
if probability <= 50:
color = f"rgb(255, {int(255 * (probability / 50))}, 0)"
else:
color = f"rgb({int(255 * (2 - probability / 50))}, 255, 0)"
# Determine verdict text
if score >= 0.6:
verdict_text = '✅ Same Speaker'
else:
verdict_text = '⚠️ Different Speakers'
result = f"""
<div style='font-family: Arial, sans-serif; font-size: 16px; background-color: #f5f5f5; padding: 20px; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
<h2 style='color: #333; margin-bottom: 20px;'>Speaker Verification Analysis Results</h2>
<p style='margin-bottom: 10px; color: black;'>Similarity Score: <strong style='color:{color};'>{probability:.1f}%</strong></p>
{heat_bar}
<p style='margin-top: 20px; font-size: 18px; font-weight: bold; color: #333;'>{verdict_text}</p>
</div>
"""
progress(1.0)
return result
except Exception as e:
return f"❌ Error during verification: {str(e)}"
# Initialize the system
speaker_verification = ForensicSpeakerVerification()
# GRADIO
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🎙️ Forensic Speaker Verification System
Upload or record two audio samples to compare and verify if they belong to the same speaker.
"""
)
with gr.Column():
questioned_audio = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Questioned Audio Sample"
)
suspect_audio = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Suspect Audio Sample"
)
test_button = gr.Button("🔍 Compare Speakers", variant="primary")
test_output = gr.HTML()
test_button.click(
fn=speaker_verification.verify_speaker,
inputs=[questioned_audio, suspect_audio],
outputs=test_output
)
gr.Markdown(
"""
### How it works
1. Upload or record the questioned audio sample.
2. Upload or record the suspect audio sample.
3. Click "Compare Speakers" to analyze the similarity between the two samples.
4. View the results, including the similarity score and verdict.
Note: For best results, use clear audio samples with minimal background noise.
"""
)
# Launch the interface
demo.launch(share=True)