File size: 2,680 Bytes
6784e11
922d2f8
9d9db66
adca989
6784e11
 
9d9db66
 
6784e11
22c47ed
 
 
 
 
 
 
 
 
 
 
 
25f2f9b
 
 
 
 
 
 
 
 
6784e11
9d9db66
 
 
 
 
 
adca989
 
 
9d9db66
 
6784e11
22c47ed
4199c36
 
 
 
 
582c0ea
22c47ed
 
 
 
 
 
 
 
 
 
 
 
922d2f8
 
22c47ed
 
922d2f8
22c47ed
 
6784e11
 
 
f2e12a9
25f2f9b
83aa999
40b9503
6784e11
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
import pandas as pd
from transformers import AutoImageProcessor, AutoModelForObjectDetection
from PIL import Image, ImageDraw
import torch

image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small')
model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small')

colors = ["red",
          "orange",
          "yellow",
          "green",
          "blue",
          "indigo",
          "violet",
          "brown",
          "black",
          "slategray",
         ]

def detect(image):
    # Change width to 640 pixels
    #h, w, c = image.shape
    #scale = 640 / w
    
    inputs = image_processor(images=image, 
                             do_resize=True,
                             size={"longest_edge": 640},
                             return_tensors="pt")
    outputs = model(**inputs)

    # convert outputs to COCO API
    target_sizes = torch.tensor([image.size[::-1]])
    results = image_processor.post_process_object_detection(outputs,
                                                            threshold=0.9,
                                                            target_sizes=target_sizes)[0]

    draw = ImageDraw.Draw(image)
    
    # label and the count
    counts = {}

    for score, label in zip(results["scores"], results["labels"]):
        label_name = model.config.id2label[label.item()]
        if label_name not in counts:
            counts[label_name] = 0
        counts[label_name] += 1

    count_results = {k: v for k, v in (sorted(counts.items(), key=lambda item: item[1], reverse=True)[:10])}
    label2color = {}
    for idx, label in enumerate(count_results):
        label2color[label] = colors[idx]

    for label, box in zip(results["labels"], results["boxes"]):
        label_name = model.config.id2label[label.item()]

        if label_name in count_results:
            box = [round(i, 4) for i in box.tolist()]
            x1, y1, x2, y2 = tuple(box)
            draw.rectangle((x1, y1, x2, y2), outline=label2color[label_name], width=2)
            draw.text((x1, y1), label_name, fill="white")

    df = pd.DataFrame({
        'label': [label for label in count_results],
        'counts': [counts[label] for label in count_results]
    })
    
    return image, df, count_results

demo = gr.Interface(
    fn=detect,
    examples=["examples/football.jpg", "examples/cats.jpg"],
    inputs=[gr.inputs.Image(label="Input image", type="pil"],
    outputs=[gr.Image(label="Output image"), gr.BarPlot(show_label=False, x="label", y="counts", x_title="Labels", y_title="Counts", vertical=False), gr.Textbox(show_label=False)],
    title="YOLO Object Detection",
)

demo.launch()