Spaces:
Running
Running
File size: 1,086 Bytes
6784e11 9d9db66 6784e11 9d9db66 6784e11 3602b81 6784e11 9d9db66 6784e11 9d9db66 6784e11 9d9db66 6784e11 9d9db66 6784e11 3602b81 bba67ef 6784e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import torch
image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small')
model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small')
def detect(image):
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs to COCO API
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(outputs,
threshold=0.9,
target_sizes=target_sizes)[0]
# model predicts bounding boxes and corresponding COCO classes
#logits = outputs.logits
#bboxes = outputs.pred_boxes
# label and the count
counts = {}
return results
demo = gr.Interface(
fn=detect,
inputs=[gr.inputs.Image(label="Input image")],
outputs=["text"], #, gr.Label(num_top_classes=10)],
title="Object Counts in Image"
)
demo.launch() |