Spaces:
Runtime error
Runtime error
File size: 8,209 Bytes
a86ebfe 074b087 4f600ec 64547bc 4c1a7b2 eb03325 edb53bb 074b087 336e489 4c1a7b2 a76f382 a86ebfe 336e489 a76f382 336e489 a86ebfe bc97bc5 9ac4891 bc97bc5 0e521b1 e5f8353 bc97bc5 074b087 0e521b1 4dcdda4 eb03325 0e521b1 4dcdda4 a933a32 ea0ca81 4dcdda4 047f2f7 0e521b1 0b09452 9e3fcd6 0e521b1 a76f382 cadaacb 453fff7 a76f382 cadaacb a76f382 453fff7 cadaacb a76f382 6cd26ad 0e521b1 3e92edb 981853f 3e92edb a933a32 eb03325 3e92edb a933a32 3e92edb a933a32 c306ca3 3e92edb b0a4631 3e92edb a933a32 3e92edb 240757a 3e92edb a933a32 1e19707 a933a32 f764e22 a933a32 3e92edb 074b087 3e92edb 000ea05 074b087 3e92edb 074b087 3e92edb 074b087 0567ede 38110be 074b087 38110be fc3e5ca 0e521b1 1c9fb4e fc3e5ca 0e521b1 be5e499 8d37970 998c13e 074b087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import tweepy as tw
import streamlit as st
import pandas as pd
import torch
import numpy as np
import regex as re
import pysentimiento
import geopy
import matplotlib.pyplot as plt
from pysentimiento.preprocessing import preprocess_tweet
from geopy.geocoders import Nominatim
from transformers import pipeline
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021"
pipeline_nlp = pipeline("text-classification", model=model_checkpoint)
import torch
if torch.cuda.is_available():
device = torch.device( "cuda")
print('I will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
consumer_key = "BjipwQslVG4vBdy4qK318KnoA"
consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ"
access_token = "1217853705086799872-Y5zEChpTeKccuLY3XJRXDPPZhNrlba"
access_token_secret = "pqQ5aFSJxzJ2xnI6yhVtNjQO36FOu8DBOH6DtUrPAU54J"
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)
def preprocess(text):
#text=text.lower()
# remove hyperlinks
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
#Replace &, <, > with &,<,> respectively
text=text.replace(r'&?',r'and')
text=text.replace(r'<',r'<')
text=text.replace(r'>',r'>')
#remove hashtag sign
#text=re.sub(r"#","",text)
#remove mentions
text = re.sub(r"(?:\@)\w+", '', text)
#text=re.sub(r"@","",text)
#remove non ascii chars
text=text.encode("ascii",errors="ignore").decode()
#remove some puncts (except . ! ?)
text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
text=re.sub(r'[!]+','!',text)
text=re.sub(r'[?]+','?',text)
text=re.sub(r'[.]+','.',text)
text=re.sub(r"'","",text)
text=re.sub(r"\(","",text)
text=re.sub(r"\)","",text)
text=" ".join(text.split())
return text
def highlight_survived(s):
return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)
def color_survived(val):
color = 'red' if val=='Sexista' else 'white'
return f'background-color: {color}'
st.set_page_config(layout="wide")
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
colT1,colT2 = st.columns([2,8])
with colT2:
# st.title('Analisis de comentarios sexistas en Twitter')
st.markdown(""" <style> .font {
font-size:40px ; font-family: 'Cooper Black'; color: #06bf69;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
st.markdown(""" <style> .font1 {
font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;}
</style> """, unsafe_allow_html=True)
st.markdown(""" <style> .font2 {
font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;}
</style> """, unsafe_allow_html=True)
def analizar_tweets(search_words, number_of_tweets ):
tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended", count= number_of_tweets)
tweet_list = [i.full_text for i in tweets]
text= pd.DataFrame(tweet_list)
text[0] = text[0].apply(preprocess_tweet)
text_list = text[0].tolist()
result = []
for text in text_list:
if (text.startswith('RT')):
continue
else:
prediction = pipeline_nlp(text)
for predic in prediction:
etiqueta = {'Tweets': text,'Prediccion': predic['label'], 'Probabilidad': predic['score']}
result.append(etiqueta)
df = pd.DataFrame(result)
df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
return tabla
def analizar_frase(frase):
#palabra = frase.split()
#palabra = frase
predictions = pipeline_nlp(frase)
# convierte las predicciones en una lista de diccionarios
data = [{'Texto': frase, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions]
# crea un DataFrame a partir de la lista de diccionarios
df = pd.DataFrame(data)
df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
# muestra el DataFrame
#st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
return tabla
def tweets_localidad(buscar_localidad):
geolocator = Nominatim(user_agent="nombre_del_usuario")
location = geolocator.geocode(buscar_localidad)
radius = "10km"
tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50, tweet_mode="extended")
tweet_list = [i.full_text for i in tweets]
text= pd.DataFrame(tweet_list)
text[0] = text[0].apply(preprocess_tweet)
text_list = text[0].tolist()
result = []
for text in text_list:
if (text.startswith('RT')):
continue
else:
prediction = pipeline_nlp(text)
for predic in prediction:
etiqueta = {'Tweets': text,'Prediccion': predic['label'], 'Probabilidad': predic['score']}
result.append(etiqueta)
df = pd.DataFrame(result)
df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
#tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
#df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
df=df[df["Prediccion"] == 'Sexista']
tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion']))
df_sexista = df[df['Prediccion']=="Sexista"]
df_no_sexista = df[df['Probabilidad'] > 0]
sexista = len(df_sexista)
no_sexista = len(df_no_sexista)
# Crear un gráfico de barras
labels = ['Sexista ', ' No sexista']
counts = [sexista, no_sexista]
plt.bar(labels, counts)
plt.xlabel('Categoría')
plt.ylabel('Cantidad de tweets')
plt.title('Cantidad de tweets sexistas y no sexistas')
plt.figure(figsize=(10,6))
plt.show()
st.pyplot()
st.set_option('deprecation.showPyplotGlobalUse', False)
return tabla
def run():
with st.form("my_form"):
col,buff1, buff2 = st.columns([2,2,1])
st.write("Escoja una Opción")
search_words = col.text_input("Introduzca el termino, usuario o localidad para analizar y pulse el check correspondiente")
number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,0)
termino=st.checkbox('Término')
usuario=st.checkbox('Usuario')
localidad=st.checkbox('Localidad')
submit_button = col.form_submit_button(label='Analizar')
error =False
if submit_button:
# Condición para el caso de que esten dos check seleccionados
if ( termino == False and usuario == False and localidad == False):
st.text('Error no se ha seleccionado ningun check')
error=True
elif ( termino == True and usuario == True and localidad == True):
st.text('Error se han seleccionado varios check')
error=True
if (error == False):
if (termino):
analizar_frase(search_words)
elif (usuario):
analizar_tweets(search_words,number_of_tweets)
elif (localidad):
tweets_localidad(search_words)
run() |