KebabLover's picture
update agent to genearate streamlit app
47728dd
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import os
import sys
import subprocess # Ajout de l'import manquant pour ShellCommandTool
import io
import json
from huggingface_hub import HfApi
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from Gradio_UI import GradioUI
from smolagents.models import OpenAIServerModel
from tools.create_file_tool import CreateFileTool
from tools.modify_file_tool import ModifyFileTool
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def get_current_realtime()-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that get the current realtime
"""
return datetime.datetime.now()
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' è
# model = HfApiModel(
# model_id="http://192.168.1.141:1234/v1",
# max_new_tokens=2096,
# temperature=0.5
# )
# Configuration du modèle pour se connecter au LLM hébergé localement via LMStudio
model = OpenAIServerModel(
api_base ="http://192.168.1.141:1234/v1",
model_id="Qwen/Qwen2.5-Coder-14B-Instruct-GGUF", # Nom arbitraire pour le modèle local
api_key="sk-dummy-key" # Clé factice pour LMStudio
# max_tokens=2096,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Tentative de correction pour ShellCommandTool
try:
from tools.shell_tool import ShellCommandTool
shell_tool = ShellCommandTool()
except Exception as e:
print(f"Erreur lors du chargement de ShellCommandTool: {e}")
# Créer une version simplifiée de l'outil si nécessaire
shell_tool = None
agent = CodeAgent(
model=model,
tools=[final_answer, DuckDuckGoSearchTool(), VisitWebpageTool(), CreateFileTool(), ModifyFileTool()],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
# Ajouter ShellCommandTool conditionnellement
if shell_tool is not None:
agent.tools['shell_command'] = shell_tool
# Sauvegarder manuellement sans utiliser to_dict() pour éviter les erreurs de validation
agent_data = {
"name": agent.name,
"description": agent.description,
"model": agent.model.to_dict() if hasattr(agent.model, "to_dict") else str(agent.model),
"tools": [tool.__class__.__name__ for tool in agent.tools.values()],
"max_steps": agent.max_steps,
"grammar": agent.grammar,
"planning_interval": agent.planning_interval,
}
# # Sauvegarder l'agent au format JSON personnalisé
# with open("agent.json", "w", encoding="utf-8") as f:
# json.dump(agent_data, f, ensure_ascii=False, indent=2)
# # La méthode push_to_hub pose problème avec les emojis, utiliser plutôt le script push_to_hf.py
# print("Agent sauvegardé dans agent.json. Utilisez push_to_hf.py pour le pousser sur Hugging Face.")
# Utiliser l'API Hugging Face directement avec encodage UTF-8
# try:
# api = HfApi()
# api.upload_file(
# path_or_fileobj="agent.json",
# path_in_repo="agent.json",
# repo_id="KebabLover/SmolCoderAgent_0_1",
# repo_type="space",
# commit_message="Mise à jour de l'agent"
# )
# print("Agent poussé avec succès vers Hugging Face!")
# except Exception as e:
# print(f"Erreur lors du push vers Hugging Face: {e}")
GradioUI(agent).launch()