Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
import os | |
import sys | |
import subprocess # Ajout de l'import manquant pour ShellCommandTool | |
import io | |
import json | |
from huggingface_hub import HfApi | |
from tools.final_answer import FinalAnswerTool | |
from tools.visit_webpage import VisitWebpageTool | |
from tools.web_search import DuckDuckGoSearchTool | |
from Gradio_UI import GradioUI | |
from smolagents.models import OpenAIServerModel | |
from tools.create_file_tool import CreateFileTool | |
from tools.modify_file_tool import ModifyFileTool | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def get_current_realtime()-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that get the current realtime | |
""" | |
return datetime.datetime.now() | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' è | |
# model = HfApiModel( | |
# model_id="http://192.168.1.141:1234/v1", | |
# max_new_tokens=2096, | |
# temperature=0.5 | |
# ) | |
# Configuration du modèle pour se connecter au LLM hébergé localement via LMStudio | |
model = OpenAIServerModel( | |
api_base ="http://192.168.1.141:1234/v1", | |
model_id="Qwen/Qwen2.5-Coder-14B-Instruct-GGUF", # Nom arbitraire pour le modèle local | |
api_key="sk-dummy-key" # Clé factice pour LMStudio | |
# max_tokens=2096, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
# Tentative de correction pour ShellCommandTool | |
try: | |
from tools.shell_tool import ShellCommandTool | |
shell_tool = ShellCommandTool() | |
except Exception as e: | |
print(f"Erreur lors du chargement de ShellCommandTool: {e}") | |
# Créer une version simplifiée de l'outil si nécessaire | |
shell_tool = None | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, DuckDuckGoSearchTool(), VisitWebpageTool(), CreateFileTool(), ModifyFileTool()], | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
# Ajouter ShellCommandTool conditionnellement | |
if shell_tool is not None: | |
agent.tools['shell_command'] = shell_tool | |
# Sauvegarder manuellement sans utiliser to_dict() pour éviter les erreurs de validation | |
agent_data = { | |
"name": agent.name, | |
"description": agent.description, | |
"model": agent.model.to_dict() if hasattr(agent.model, "to_dict") else str(agent.model), | |
"tools": [tool.__class__.__name__ for tool in agent.tools.values()], | |
"max_steps": agent.max_steps, | |
"grammar": agent.grammar, | |
"planning_interval": agent.planning_interval, | |
} | |
# # Sauvegarder l'agent au format JSON personnalisé | |
# with open("agent.json", "w", encoding="utf-8") as f: | |
# json.dump(agent_data, f, ensure_ascii=False, indent=2) | |
# # La méthode push_to_hub pose problème avec les emojis, utiliser plutôt le script push_to_hf.py | |
# print("Agent sauvegardé dans agent.json. Utilisez push_to_hf.py pour le pousser sur Hugging Face.") | |
# Utiliser l'API Hugging Face directement avec encodage UTF-8 | |
# try: | |
# api = HfApi() | |
# api.upload_file( | |
# path_or_fileobj="agent.json", | |
# path_in_repo="agent.json", | |
# repo_id="KebabLover/SmolCoderAgent_0_1", | |
# repo_type="space", | |
# commit_message="Mise à jour de l'agent" | |
# ) | |
# print("Agent poussé avec succès vers Hugging Face!") | |
# except Exception as e: | |
# print(f"Erreur lors du push vers Hugging Face: {e}") | |
GradioUI(agent).launch() |