File size: 8,547 Bytes
e3c2886
eba92d1
 
8287fdb
eba92d1
 
 
8287fdb
 
 
 
23a08b3
8287fdb
eba92d1
8287fdb
 
 
 
e3c2886
eba92d1
 
 
 
 
 
8287fdb
eba92d1
 
8287fdb
 
eba92d1
 
8287fdb
 
eba92d1
 
8287fdb
 
eba92d1
 
8287fdb
 
eba92d1
 
8287fdb
 
 
eba92d1
8287fdb
 
eba92d1
 
 
 
8287fdb
 
eba92d1
 
 
 
 
 
8287fdb
 
 
 
 
 
 
 
 
 
23a08b3
8287fdb
 
 
23a08b3
8287fdb
23a08b3
8287fdb
 
 
 
 
 
 
 
 
 
 
 
4f299e1
8287fdb
 
 
 
 
 
 
 
 
 
 
 
 
23a08b3
8287fdb
 
 
23a08b3
8287fdb
23a08b3
8287fdb
 
 
 
 
 
 
 
 
 
23a08b3
8287fdb
 
 
23a08b3
8287fdb
23a08b3
8287fdb
eba92d1
8287fdb
 
 
 
 
 
 
eba92d1
8287fdb
 
 
 
eba92d1
8287fdb
 
 
 
 
 
 
 
 
 
 
 
 
0fb8370
8287fdb
 
eba92d1
8287fdb
 
 
 
 
 
 
 
 
 
 
eba92d1
8287fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed80eb
23a08b3
 
 
 
 
 
 
 
b248751
 
23a08b3
 
 
 
 
eba92d1
8287fdb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import numpy as np
import librosa
import librosa.display
import pickle
import tensorflow as tf
import gradio as gr
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')  # Use non-interactive backend
from io import BytesIO
from PIL import Image
import warnings

# Suppress warnings and logs
warnings.filterwarnings("ignore", category=UserWarning, module="sklearn")
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"

# Load model and label encoder
model = tf.keras.models.load_model("ann_new_emotion_recognition_model.h5", compile=False)
with open("new_label_encoder.pkl", "rb") as f:
    label_encoder = pickle.load(f)

def extract_features(audio, sr, max_len=40):
    # Extract MFCCs
    mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=20)
    mfccs = np.mean(mfccs.T, axis=0)
    
    # Extract Chroma
    chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
    chroma = np.mean(chroma.T, axis=0)
    
    # Extract Spectral Contrast
    contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
    contrast = np.mean(contrast.T, axis=0)
    
    # Extract Zero-Crossing Rate
    zcr = librosa.feature.zero_crossing_rate(y=audio)
    zcr = np.mean(zcr.T, axis=0)
    
    # Extract Spectral Centroid
    centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)
    centroid = np.mean(centroid.T, axis=0)
    
    # Extract Spectral Rolloff
    rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr, roll_percent=0.85)
    rolloff = np.mean(rolloff.T, axis=0)
    
    # Extract RMS Energy
    rms = librosa.feature.rms(y=audio)
    rms = np.mean(rms.T, axis=0)

    features = np.concatenate([mfccs, chroma, contrast, zcr, centroid, rolloff, rms])
    
    # Pad or trim to fixed length
    if len(features) < max_len:
        features = np.pad(features, (0, max_len - len(features)), mode='constant')
    else:
        features = features[:max_len]
    return features

def create_mel_spectrogram(audio, sr):
    """Create mel spectrogram plot"""
    plt.figure(figsize=(10, 4))
    S = librosa.feature.melspectrogram(y=audio, sr=sr, n_mels=128, fmax=8000)
    S_dB = librosa.power_to_db(S, ref=np.max)
    librosa.display.specshow(S_dB, sr=sr, x_axis='time', y_axis='mel')
    plt.colorbar(format='%+2.0f dB')
    plt.title('Mel Spectrogram')
    plt.tight_layout()
    
    # Save to BytesIO and convert to PIL Image
    buf = BytesIO()
    plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
    buf.seek(0)
    img = Image.open(buf)
    plt.close()
    return img

def create_polar_plot(emotion_probabilities):
    """Create polar plot of emotion probabilities"""
    emotions = list(emotion_probabilities.keys())
    probabilities = [prob * 100 for prob in emotion_probabilities.values()]  # Convert to percentages
    
    # Prepare data for polar plot
    angles = np.linspace(0, 2 * np.pi, len(emotions), endpoint=False).tolist()
    angles += angles[:1]  # Complete the circle
    probabilities += probabilities[:1]  # Complete the circle
    
    # Create polar plot
    fig, ax = plt.subplots(figsize=(4, 4), subplot_kw=dict(projection='polar'))
    ax.fill(angles, probabilities, color='skyblue', alpha=0.4)
    ax.plot(angles, probabilities, color='blue', linewidth=2, marker='o')
    
    # Customize the plot
    ax.set_yticks([20, 40, 60, 80, 100])
    ax.set_yticklabels(["20%", "40%", "60%", "80%", "100%"], color="gray", fontsize=10)
    ax.set_xticks(angles[:-1])
    ax.set_xticklabels(emotions, fontsize=12, color="darkblue")
    ax.set_ylim(0, 100)
    
    ax.set_title("Emotion Probabilities", va='bottom', fontsize=14, color="darkblue", pad=20)
    plt.tight_layout()
    
    # Save to BytesIO and convert to PIL Image
    buf = BytesIO()
    plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
    buf.seek(0)
    img = Image.open(buf)
    plt.close()
    return img

def create_waveform_plot(audio, sr):
    """Create waveform plot"""
    plt.figure(figsize=(12, 4))
    librosa.display.waveshow(audio, sr=sr)
    plt.title('Audio Waveform')
    plt.xlabel('Time (seconds)')
    plt.ylabel('Amplitude')
    plt.tight_layout()
    
    # Save to BytesIO and convert to PIL Image
    buf = BytesIO()
    plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
    buf.seek(0)
    img = Image.open(buf)
    plt.close()
    return img

def predict_emotion(audio_file):
    try:
        # Load audio file
        audio_np, sr = librosa.load(audio_file, sr=None, res_type='kaiser_fast')
        
        # Extract features
        features = extract_features(audio_np, sr)
        features = np.expand_dims(features, axis=0)

        # Make prediction
        predictions = model.predict(features, verbose=0)
        predicted_class = np.argmax(predictions[0])
        predicted_emotion = label_encoder.inverse_transform([predicted_class])[0]

        # Calculate emotion probabilities (as percentages for display)
        emotion_probabilities = {
            label_encoder.inverse_transform([i])[0]: round(float(pred), 4)
            for i, pred in enumerate(predictions[0])
        }
        
        # Create visualizations
        mel_spec_plot = create_mel_spectrogram(audio_np, sr)
        polar_plot = create_polar_plot(emotion_probabilities)
        waveform_plot = create_waveform_plot(audio_np, sr)
        
        # Convert probabilities to percentages for better display
        emotion_probabilities_percent = {
            emotion: round(prob, 2) 
            for emotion, prob in emotion_probabilities.items()
        }

        return (
            predicted_emotion,
            emotion_probabilities_percent,
            mel_spec_plot,
            polar_plot,
            waveform_plot
        )
        
    except Exception as e:
        error_msg = f"Error processing audio: {str(e)}"
        return error_msg, {}, None, None, None

# Create Gradio interface
with gr.Blocks(title="🎀 Emotion Recognition from Audio", theme=gr.themes.Soft()) as iface:
    gr.Markdown(
        """
        # 🎀 Emotion Recognition from Audio
        Upload or record an audio file to analyze the emotional content and view detailed visualizations.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            audio_input = gr.Audio(
                label="Upload or Record Audio",
                type="filepath",
                sources=["upload", "microphone"]
            )
            
            predict_btn = gr.Button("πŸ” Analyze Emotion", variant="primary", size="lg")
            
        with gr.Column(scale=1):
            predicted_emotion = gr.Text(label="🎯 Predicted Emotion", interactive=False)
            emotion_probs = gr.Label(label="πŸ“Š Emotion Probabilities (%)", num_top_classes=10)
    
    with gr.Row():
        with gr.Column():
            waveform_plot = gr.Image(label="🌊 Audio Waveform", type="pil")
        with gr.Column():
            mel_spec_plot = gr.Image(label="🎡 Mel Spectrogram", type="pil")
    
    with gr.Row():
        polar_plot = gr.Image(label="🎯 Emotion Probability Radar", type="pil")
    
    # Set up the prediction function
    predict_btn.click(
        fn=predict_emotion,
        inputs=[audio_input],
        outputs=[predicted_emotion, emotion_probs, mel_spec_plot, polar_plot, waveform_plot]
    )
    
    # Also allow automatic prediction when audio is uploaded
    audio_input.change(
        fn=predict_emotion,
        inputs=[audio_input],
        outputs=[predicted_emotion, emotion_probs, mel_spec_plot, polar_plot, waveform_plot]
    )

    gr.Markdown(
        """
        ### πŸ“ How it works:
        1. **Upload** an audio file or **record** directly using your microphone
        2. The system extracts audio features (MFCCs, Chroma, Spectral features, etc.)
        3. A trained neural network predicts the emotion
        4. View the results with detailed visualizations:
           - **Waveform**: Shows the audio signal over time
           - **Mel Spectrogram**: Visual representation of the audio's frequency content 
           - **Radar Chart**: Probability distribution across all diff emotion categories
        
        ### 🎭 Supported Emotions:
        Depending on your model training, this may include emotions like: Happy, Sad, Angry, Fear, Disgust, Surprise, Neutral, and others.
        """
    )

# Launch the interface
if __name__ == "__main__":
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )