|
import os |
|
import torch |
|
import streamlit as st |
|
from groq import Groq |
|
from diffusers import AutoPipelineForText2Image |
|
|
|
|
|
GROQ_API_KEY = os.getenv("GROQ_API_KEY") |
|
HF_API_KEY = os.getenv("HF_API_KEY") |
|
|
|
|
|
client = Groq(api_key=GROQ_API_KEY) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
st.write(f"Using device: {device}") |
|
|
|
|
|
image_gen = AutoPipelineForText2Image.from_pretrained( |
|
"stabilityai/sdxl-turbo", use_auth_token=HF_API_KEY |
|
) |
|
image_gen.to(device) |
|
|
|
|
|
def transcribe(audio_file): |
|
with open(audio_file, "rb") as file: |
|
transcription = client.audio.transcriptions.create( |
|
file=(audio_file, file.read()), |
|
model="whisper-large-v3", |
|
language="ta", |
|
response_format="verbose_json" |
|
) |
|
return transcription["text"] |
|
|
|
|
|
def translate_text(tamil_text): |
|
response = client.chat.completions.create( |
|
model="gemma-7b-it", |
|
messages=[{"role": "user", "content": f"Translate this Tamil text to English: {tamil_text}"}] |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
def generate_text(prompt): |
|
response = client.chat.completions.create( |
|
model="deepseek-coder-r1-7b", |
|
messages=[{"role": "user", "content": f"Write a short story about: {prompt}"}] |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
def generate_image(prompt): |
|
img = image_gen(prompt=prompt).images[0] |
|
return img |
|
|
|
|
|
st.title("Tamil Speech to Image & Story Generator") |
|
|
|
|
|
uploaded_audio = st.file_uploader("Upload your Tamil speech", type=["wav", "mp3", "m4a"]) |
|
|
|
if uploaded_audio is not None: |
|
st.audio(uploaded_audio, format="audio/wav") |
|
|
|
if st.button("Generate"): |
|
with st.spinner("Transcribing..."): |
|
tamil_text = transcribe(uploaded_audio) |
|
st.success("Transcription complete!") |
|
st.text_area("Tamil Text Output", tamil_text) |
|
|
|
with st.spinner("Translating to English..."): |
|
english_text = translate_text(tamil_text) |
|
st.success("Translation complete!") |
|
st.text_area("Translated English Text", english_text) |
|
|
|
with st.spinner("Generating story..."): |
|
story = generate_text(english_text) |
|
st.success("Story generation complete!") |
|
st.text_area("Generated Story", story) |
|
|
|
with st.spinner("Generating image..."): |
|
image = generate_image(english_text) |
|
st.success("Image generation complete!") |
|
st.image(image, caption="Generated Image") |
|
|