Spaces:
Sleeping
Sleeping
import tiktoken | |
import torch | |
import time | |
import math | |
import re | |
from torch.utils.data import Dataset, DataLoader | |
import gradio as gr | |
import torch.nn as nn | |
class GPTModel(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | |
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | |
self.drop_emb = nn.Dropout(cfg["drop_rate"]) | |
self.trf_blocks = nn.Sequential( | |
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])] | |
) | |
self.final_norm = LayerNorm(cfg["emb_dim"]) | |
self.out_head = nn.Linear( | |
cfg["emb_dim"], cfg["vocab_size"], bias=False | |
) | |
def forward(self, in_idx): | |
batch_size, seq_len = in_idx.shape | |
tok_embeds = self.tok_emb(in_idx) | |
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | |
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] | |
x = self.drop_emb(x) | |
x = self.trf_blocks(x) | |
x = self.final_norm(x) | |
logits = self.out_head(x) | |
return logits | |
class TransformerBlock(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.att = MultiHeadAttention( | |
d_in=cfg["emb_dim"], | |
d_out=cfg["emb_dim"], | |
context_length=cfg["context_length"], | |
num_heads=cfg["n_heads"], | |
dropout=cfg["drop_rate"], | |
qkv_bias=cfg["qkv_bias"] | |
) | |
self.ff = FeedForward(cfg) | |
self.norm1 = LayerNorm(cfg["emb_dim"]) | |
self.norm2 = LayerNorm(cfg["emb_dim"]) | |
self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | |
def forward(self, x): | |
# Shortcut connection for attnetion block | |
shortcut = x | |
x = self.norm1(x) | |
x = self.att(x) # Shape [batch_size, num_tokens, emb_size] | |
x = self.drop_shortcut(x) | |
x = x + shortcut # Add the original input back | |
# Shortcut connection for feed forward block | |
shortcut = x | |
x = self.norm2(x) | |
x = self.ff(x) | |
x = self.drop_shortcut(x) | |
x = x + shortcut # Add the original input back | |
return x | |
class TransformerBlock(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.att = MultiHeadAttention( | |
d_in=cfg["emb_dim"], | |
d_out=cfg["emb_dim"], | |
context_length=cfg["context_length"], | |
num_heads=cfg["n_heads"], | |
dropout=cfg["drop_rate"], | |
qkv_bias=cfg["qkv_bias"] | |
) | |
self.ff = FeedForward(cfg) | |
self.norm1 = LayerNorm(cfg["emb_dim"]) | |
self.norm2 = LayerNorm(cfg["emb_dim"]) | |
self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | |
def forward(self, x): | |
# Shortcut connection for attnetion block | |
shortcut = x | |
x = self.norm1(x) | |
x = self.att(x) # Shape [batch_size, num_tokens, emb_size] | |
x = self.drop_shortcut(x) | |
x = x + shortcut # Add the original input back | |
# Shortcut connection for feed forward block | |
shortcut = x | |
x = self.norm2(x) | |
x = self.ff(x) | |
x = self.drop_shortcut(x) | |
x = x + shortcut # Add the original input back | |
return x | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | |
super().__init__() | |
assert (d_out % num_heads == 0), \ | |
"d_out must be divisible by num_heads" | |
self.d_out = d_out | |
self.num_heads = num_heads | |
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim | |
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | |
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | |
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | |
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs | |
self.dropout = nn.Dropout(dropout) | |
self.register_buffer( | |
"mask", | |
torch.triu(torch.ones(context_length, context_length), | |
diagonal=1) | |
) | |
def forward(self, x): | |
b, num_tokens, d_in = x.shape | |
keys = self.W_key(x) # Shape: (b, num_tokens, d_out) | |
queries = self.W_query(x) | |
values = self.W_value(x) | |
# implicitly split the matrix by adding a `num_heads` dimension | |
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | |
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | |
values = values.view(b, num_tokens, self.num_heads, self.head_dim) | |
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | |
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | |
keys = keys.transpose(1, 2) | |
queries = queries.transpose(1, 2) | |
values = values.transpose(1, 2) | |
# Compute scaled dot-product attention (aka self-attention) with a causal mask | |
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head | |
# Original mask truncated to the number of tokens and converted to boolean | |
mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | |
# Use the mask to fill attention scores | |
attn_scores.masked_fill_(mask_bool, -torch.inf) | |
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | |
attn_weights = self.dropout(attn_weights) | |
# Shape: (b, num_tokens, num_heads, head_dim) | |
context_vec = (attn_weights @ values).transpose(1, 2) | |
# Combine heads, where self.d_out = self.num_heads * self.head_dim | |
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) | |
context_vec = self.out_proj(context_vec) # optional projection | |
return context_vec | |
class FeedForward(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.layers = nn.Sequential( | |
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | |
GELU(), | |
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]) | |
) | |
def forward(self, x): | |
return self.layers(x) | |
class GELU(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return 0.5 * x * (1 + torch.tanh( | |
torch.sqrt(torch.tensor(2.0 / torch.pi)) * | |
(x + 0.044715 * torch.pow(x, 3)) | |
)) | |
class LayerNorm(nn.Module): | |
def __init__(self, emb_dim): | |
super().__init__() | |
self.eps = 1e-5 | |
self.scale = nn.Parameter(torch.ones(emb_dim)) | |
self.shift = nn.Parameter(torch.zeros(emb_dim)) | |
def forward(self, x): | |
mean = x.mean(dim=-1, keepdim=True) | |
var = x.var(dim=-1, keepdim=True, unbiased=False) | |
norm_x = (x - mean) / torch.sqrt(var + self.eps) | |
return self.scale * norm_x + self.shift | |
GPT_CONFIG_124M = { | |
"vocab_size": 50257, # Vocabulary size | |
"context_length": 256, # Shortended context length (orig: 1024) | |
"emb_dim": 768, # Embedding dimension | |
"n_heads": 12, # Number of attention heads | |
"n_layers": 12, # Number of layers | |
"drop_rate": 0.1, # Dropout rate | |
"qkv_bias": False # Query-key-value bias | |
} | |
model = GPTModel(GPT_CONFIG_124M) | |
def generate(model, idx, max_new_tokens, context_size, tokenizer, text_to_token_ids, temperature=0.0, top_k=None, eos_id=None): | |
# For-loop is the same as before: Get logits, and only focus on last time step | |
for _ in range(max_new_tokens): | |
idx_cond = idx[:, -context_size:] | |
with torch.no_grad(): | |
logits = model(idx_cond) | |
logits = logits[:, -1, :] | |
# New: Filter logits with top_k sampling | |
if top_k is not None: | |
# Keep only top_k values | |
top_logits, _ = torch.topk(logits, top_k) | |
min_val = top_logits[:, -1] | |
logits = torch.where(logits < min_val, torch.tensor(float("-inf")).to(logits.device), logits) | |
# New: Apply temperature scaling | |
if temperature > 0.0: | |
logits = logits / temperature | |
# Apply softmax to get probabilities | |
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len) | |
# Sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1) | |
# Otherwise, same as before: get the idx of the vocab entry with the highest logits value | |
else: | |
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1) | |
if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified | |
break | |
# if idx_next == text_to_token_ids(".", tokenizer): | |
if idx_next == "tensor([[13]])": | |
# idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) | |
print("\nperiod\n") | |
# if idx_next == text_to_token_ids("?", tokenizer): | |
if idx_next == "tensor([[30]])": | |
# idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) | |
print("\nperiod\n") | |
# if idx_next == text_to_token_ids("!", tokenizer): | |
if idx_next == "tensor([[0]])": | |
# idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) | |
print("\nperiod\n") | |
# print(idx_next) | |
# print("----") | |
# print(idx_next + text_to_token_ids("Meow.", tokenizer)) | |
# test = idx_next + text_to_token_ids("Meow.", tokenizer) | |
# print("------") | |
# print(token_ids_to_text(idx_next, tokenizer)) | |
# Same as before: append sampled index to the running sequence | |
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1) | |
# new_idx = re.sub(".", ". Meow.", idx) | |
# return new_idx | |
return idx | |
def text_to_token_ids(text, tokenizer): | |
encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'}) | |
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension | |
return encoded_tensor | |
def token_ids_to_text(token_ids, tokenizer): | |
flat = token_ids.squeeze(0) # remove batch dimension | |
return tokenizer.decode(flat.tolist()) | |
def train_model(model, train_loader, val_loader, optimizer, device, | |
n_epochs, eval_freq, eval_iter, start_context, tokenizer, | |
warmup_steps, initial_lr=3e-05, min_lr=1e-6): | |
train_losses, val_losses, track_tokens_seen, track_lrs = [], [], [], [] | |
tokens_seen, global_step = 0, -1 | |
# Retrieve the maximum learning rate from the optimizer | |
peak_lr = optimizer.param_groups[0]["lr"] | |
# Calculate the total number of iterations in the training process | |
total_training_steps = len(train_loader) * n_epochs | |
# Calculate the learning rate increment during the warmup phase | |
lr_increment = (peak_lr - initial_lr) / warmup_steps | |
for epoch in range(n_epochs): | |
model.train() | |
for input_batch, target_batch in train_loader: | |
optimizer.zero_grad() | |
global_step += 1 | |
# Adjust the learning rate based on the current phase (warmup or cosine annealing) | |
if global_step < warmup_steps: | |
# Linear warmup | |
lr = initial_lr + global_step * lr_increment | |
else: | |
# Cosine annealing after warmup | |
progress = ((global_step - warmup_steps) / | |
(total_training_steps - warmup_steps)) | |
lr = min_lr + (peak_lr - min_lr) * 0.5 * (1 + math.cos(math.pi * progress)) | |
# Apply the calculated learning rate to the optimizer | |
for param_group in optimizer.param_groups: | |
param_group["lr"] = lr | |
track_lrs.append(lr) # Store the current learning rate | |
# Calculate and backpropagate the loss | |
loss = calc_loss_batch(input_batch, target_batch, model, device) | |
loss.backward() | |
# Apply gradient clipping after the warmup phase to avoid exploding gradients | |
if global_step > warmup_steps: | |
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) | |
optimizer.step() | |
tokens_seen += input_batch.numel() | |
# Periodically evaluate the model on the training and validation sets | |
if global_step % eval_freq == 0: | |
train_loss, val_loss = evaluate_model( | |
model, train_loader, val_loader, | |
device, eval_iter | |
) | |
train_losses.append(train_loss) | |
val_losses.append(val_loss) | |
track_tokens_seen.append(tokens_seen) | |
# Print the current losses | |
print(f"Ep {epoch+1} (Iter {global_step:06d}): " | |
f"Train loss {train_loss:.3f}, " | |
f"Val loss {val_loss:.3f}" | |
) | |
# Generate and print a sample from the model to monitor progress | |
generate_and_print_sample( | |
model, tokenizer, device, start_context | |
) | |
return train_losses, val_losses, track_tokens_seen, track_lrs | |
def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True, num_workers=0): | |
tokenizer = tiktoken.get_encoding("gpt2") # A - Initalize the tokenizer | |
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) # B - Create dataset | |
dataloader = DataLoader( | |
dataset, | |
batch_size=batch_size, | |
shuffle=shuffle, | |
drop_last=drop_last, # C - drop_last=True drops the last batch if it is shorter than the specified batch_size to prevent loss spikes during training | |
num_workers=0 # D - The number of CPU processes to use for preprocessing | |
) | |
return dataloader | |
class GPTDatasetV1(Dataset): | |
def __init__(self, txt, tokenizer, max_length, stride): | |
self.tokenizer = tokenizer | |
self.input_ids = [] | |
self.target_ids = [] | |
token_ids = tokenizer.encode(txt) # A | |
for i in range(0, len(token_ids) - max_length, stride): # B | |
input_chunk = token_ids[i:i + max_length] | |
target_chunk = token_ids[i + 1: i +max_length + 1] | |
self.input_ids.append(torch.tensor(input_chunk)) | |
self.target_ids.append(torch.tensor(target_chunk)) | |
def __len__(self): | |
return len(self.input_ids) | |
def __getitem__(self, idx): | |
return self.input_ids[idx], self.target_ids[idx] | |
def evaluate_model(model, train_loader, val_loader, device, eval_iter): | |
model.eval() | |
with torch.no_grad(): | |
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) | |
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) | |
model.train() | |
return train_loss, val_loss | |
def generate_and_print_sample(model, tokenizer, device, start_context): | |
model.eval() | |
context_size = model.pos_emb.weight.shape[0] | |
encoded = text_to_token_ids(start_context, tokenizer).to(device) | |
with torch.no_grad(): | |
token_ids = generate_text_simple( | |
model=model, idx=encoded, | |
max_new_tokens=50, context_size=context_size | |
) | |
decoded_text = token_ids_to_text(token_ids, tokenizer) | |
print(decoded_text.replace("\n", " ")) # Compact print format | |
model.train() | |
def calc_loss_batch(input_batch, target_batch, model, device): | |
input_batch, target_batch = input_batch.to(device), target_batch.to(device) | |
logits = model(input_batch) | |
loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten()) | |
return loss | |
def calc_loss_loader(data_loader, model, device, num_batches=None): | |
total_loss = 0. | |
if len(data_loader) == 0: | |
return float("nan") | |
elif num_batches is None: | |
num_batches = len(data_loader) | |
else: | |
# Reduce the number of batches to match the total number of batches in the data loader | |
# if num_batches exceeds the number of batches in the data loader | |
num_batches = min(num_batches, len(data_loader)) | |
for i, (input_batch, target_batch) in enumerate(data_loader): | |
if i < num_batches: | |
loss = calc_loss_batch(input_batch, target_batch, model, device) | |
total_loss += loss.item() | |
else: | |
break | |
return total_loss / num_batches | |
def generate_text_simple(model, idx, max_new_tokens, context_size): | |
# idx is (batch, n_tokens) array of indices in the current context | |
for _ in range(max_new_tokens): | |
# Crop current context if it exceeds the supported context size | |
idx_cond = idx[:, -context_size:] | |
# get the predictions | |
with torch.no_grad(): | |
logits = model(idx_cond) | |
# Focus only on the last time step | |
# (batch, n_tokens, vocab_size) becomes (batch, vocab_size) | |
logits = logits[:, -1, :] | |
# apply softmax to get the probabilities | |
probas = torch.softmax(logits, dim=-1) # (batch, vocab_size) | |
# Get the idx of the vocab entry with the highest probability value | |
idx_next = torch.argmax(probas, dim=-1, keepdim=True) # (batch, 1) | |
# if idx_next == text_to_token_ids(".", tokenizer): | |
# idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) | |
# if idx_next == text_to_token_ids("?", tokenizer): | |
# idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) | |
# if idx_next == text_to_token_ids("!", tokenizer): | |
# idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) | |
# Append sampled index to the running sequence | |
idx = torch.cat((idx, idx_next), dim=1) # (batch , n_tokens+1) | |
return idx | |
def main(input_text, max_new_tokens): | |
tokenizer = tiktoken.get_encoding("gpt2") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
else: | |
device = torch.device("cpu") | |
checkpoint = torch.load("model_and_optimizer.pth", weights_only=True) | |
model = GPTModel(GPT_CONFIG_124M) | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
optimizer = torch.optim.AdamW(model.parameters(), lr=0.0005, weight_decay=0.1) | |
optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) | |
# weights = torch.load("model_and_optimizer.pth", map_location=torch.device(device)) | |
# weights = torch.load("model_and_optimizer.pth", weights_only=False) | |
# model = GPTModel({ | |
# "vocab_size": 50257, # Vocabulary size | |
# "context_length": 512, # Shortened context length (orig: 1024) | |
# "emb_dim": 768, # Embedding dimension | |
# "n_heads": 12, # Number of attention heads | |
# "n_layers": 12, # Number of layers | |
# "drop_rate": 0.3, # Dropout rate | |
# "qkv_bias": False # Query-key-value bias | |
# }).to(device) | |
# model.load_state_dict(weights['model_state_dict']) | |
model.eval() | |
context_size = model.pos_emb.weight.shape[0] | |
encoded = torch.tensor(tokenizer.encode(input_text.strip())).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
token_ids = generate( | |
model=model, idx=encoded, | |
max_new_tokens=max_new_tokens, context_size=context_size, | |
top_k=25, temperature=1.4, text_to_token_ids=text_to_token_ids, tokenizer=tokenizer | |
) | |
thingy = tokenizer.decode(token_ids.squeeze(0).tolist()) | |
new_thingy = re.sub("\.", ". Meow.", thingy) | |
# return tokenizer.decode(token_ids.squeeze(0).tolist()) | |
# return tokenizer.decode(new_thing.squeeze(0).tolist()) | |
print(thingy) | |
return new_thingy | |
# if __name__ == "__main__": | |
# gr.Interface(fn=main, inputs=[gr.Textbox(label='Starting context'), gr.Number(label="Maximum output tokens")], outputs=[gr.Textbox(label="Response:")], title="CatGPT", article="Meow").launch() | |
# thing_old = gr.Interface(fn=main, theme=gr.themes.Soft(primary_hue="pink", secondary_hue="stone"), inputs=[gr.Textbox(label='Starting context'), gr.Number(label="Maximum output tokens")], outputs=[gr.Textbox(label="Response:")], title="CatGPT", article="Meow") | |
thing = gr.Interface(fn=main, | |
theme='ParityError/Anime', | |
inputs=[gr.Textbox(label='Starting context'), | |
gr.Number(label="Maximum output tokens")], | |
outputs=[gr.Textbox(label="Response:")], | |
title="CatGPT", | |
article="Meow") | |
if __name__ == "__main__": | |
thing.launch() | |