ocr-table-v1 / app.py
KoonJamesZ's picture
Create app.py
e57a5af verified
import gradio as gr
import torch
from transformers import TableTransformerForObjectDetection
import matplotlib.pyplot as plt
from transformers import DetrFeatureExtractor
import pandas as pd
import uuid
from surya.ocr import run_ocr
# from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from PIL import ImageDraw, Image
import os
from pdf2image import convert_from_path
import tempfile
from ultralyticsplus import YOLO, render_result
import cv2
import numpy as np
from fpdf import FPDF
def convert_pdf_images(pdf_path):
# Convert PDF to images
images = convert_from_path(pdf_path)
# Save each page as a temporary image and collect file paths
temp_file_paths = []
for i, page in enumerate(images):
# Create a temporary file with a unique name
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
page.save(temp_file.name, 'PNG') # Save the image to the temporary file
temp_file_paths.append(temp_file.name) # Add file path to the list
return temp_file_paths[0] # Return the list of temporary file paths
# Load model
model_yolo = YOLO('keremberke/yolov8m-table-extraction')
# Set model parameters
model_yolo.overrides['conf'] = 0.25 # NMS confidence threshold
model_yolo.overrides['iou'] = 0.45 # NMS IoU threshold
model_yolo.overrides['agnostic_nms'] = False # NMS class-agnostic
model_yolo.overrides['max_det'] = 1000 # maximum number of detections per image
def resize_image(image, max_dimension=4200, min_dimension=50):
width, height = image.size
# Check if the dimensions are within range
if width > max_dimension or height > max_dimension or width < min_dimension or height < min_dimension:
scaling_factor = min(max_dimension / max(width, height), min_dimension / min(width, height))
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return image
def crop_table(filename):
# Set image
image_path = filename
image = Image.open(image_path)
image_np = np.array(image)
# Perform inference
results = model_yolo.predict(image_path)
# Extract the first bounding box (assuming there's only one table)
bbox = results[0].boxes[0]
x1, y1, x2, y2 = map(int, bbox.xyxy[0]) # Get the bounding box coordinates
# Crop the image using the bounding box coordinates
cropped_image = image_np[y1:y2, x1:x2]
# Convert the cropped image to RGB (if it's not already in RGB)
cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)
# Save the cropped image as a PDF
cropped_image_pil = Image.fromarray(cropped_image_rgb)
# Save the cropped image to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
cropped_image_pil.save(temp_file.name)
return temp_file.name
# new v1.1 checkpoints require no timm anymore
device = "cuda" if torch.cuda.is_available() else "cpu"
langs = ["en","th"] # Replace with your languages - optional but recommended
det_processor, det_model = load_det_processor(), load_det_model()
rec_model, rec_processor = load_rec_model(), load_rec_processor()
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
feature_extractor = DetrFeatureExtractor()
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")
def compute_boxes(image_path):
image = Image.open(image_path).convert("RGB")
width, height = image.size
encoding = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**encoding)
results = feature_extractor.post_process_object_detection(outputs, threshold=0.7, target_sizes=[(height, width)])[0]
boxes = results['boxes'].tolist()
labels = results['labels'].tolist()
return boxes,labels
def extract_table(image_path):
image = Image.open(image_path)
boxes,labels = compute_boxes(image_path)
cropped_table_visualized = image.copy()
draw = ImageDraw.Draw(cropped_table_visualized)
for cell in boxes:
draw.rectangle(cell, outline="red")
bbox_table = f"{str(uuid.uuid4())}.png"
cropped_table_visualized.save(bbox_table)
cell_locations = []
for box_row, label_row in zip(boxes, labels):
if label_row == 2:
for box_col, label_col in zip(boxes, labels):
if label_col == 1:
cell_box = (box_col[0], box_row[1], box_col[2], box_row[3])
cell_locations.append(cell_box)
cell_locations.sort(key=lambda x: (x[1], x[0]))
num_columns = 0
box_old = cell_locations[0]
for box in cell_locations[1:]:
x1, y1, x2, y2 = box
x1_old, y1_old, x2_old, y2_old = box_old
num_columns += 1
if y1 > y1_old:
break
box_old = box
headers = []
for box in cell_locations[:num_columns]:
x1, y1, x2, y2 = box
cell_image = resize_image(image.crop((x1, y1, x2, y2)))
# new_width = cell_image.width *4
# new_height = cell_image.height *4
# cell_image = cell_image.resize((new_width, new_height), resample=Image.LANCZOS)
# cell_text = pytesseract.image_to_string(cell_image, lang='tha+eng')
# print(cell_text)
plt.figure()
plt.imshow(cell_image)
plt.axis("off")
plt.title("Cropped Cell Image")
plt.show()
predictions = run_ocr([cell_image], [langs], det_model, det_processor, rec_model, rec_processor)
texts = [line.text for line in predictions[0].text_lines]
all_text = ' '.join(texts)
print(all_text)
if all_text:
headers.append(all_text)
else:
headers.append('')
df = pd.DataFrame(columns=headers)
row = []
for box in cell_locations[num_columns:]:
x1, y1, x2, y2 = box
cell_image = resize_image(image.crop((x1, y1, x2, y2)))
# new_width = cell_image.width * 4
# new_height = cell_image.height * 4
# cell_image = cell_image.resize((new_width, new_height), resample=Image.LANCZOS)
# cell_text = pytesseract.image_to_string(cell_image, lang='tha+eng')
# print(cell_text)
plt.figure()
plt.imshow(cell_image)
plt.axis("off")
plt.title("Cropped Cell Image")
plt.show()
predictions = run_ocr([cell_image], [langs], det_model, det_processor, rec_model, rec_processor)
texts = [line.text for line in predictions[0].text_lines]
all_text = ''.join(texts)
print(all_text)
if all_text:
headers.append(all_text)
else:
headers.append('')
row.append(all_text)
if len(row) == num_columns:
df.loc[len(df)] = row
print(row)
row = []
filepath = f"{str(uuid.uuid4())}.csv"
df.to_csv(filepath, index=False)
return filepath, bbox_table
# Function to process the uploaded file
def process_file(uploaded_file):
images_table = convert_pdf_images(uploaded_file)
croped_table = crop_table(images_table)
filepath, bbox_table = extract_table(croped_table)
os.remove(images_table)
os.remove(croped_table)
return filepath, bbox_table # Return the file path for download
# Function to clear the inputs and outputs
def clear_inputs():
return None, None, None # Clear both input and output
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Upload a PDF, Process it, and Download the Processed File")
with gr.Row():
upload = gr.File(label="Upload PDF", type="filepath", file_types=[".pdf"])
download = gr.File(label="Download Processed PDF")
with gr.Row():
process_button = gr.Button("Process")
clear_button = gr.Button("Clear") # Custom clear button
image_display = gr.Image(label="Processed Image")
# Trigger the file processing with the button click
process_button.click(process_file, inputs=upload, outputs=[download, image_display])
# Trigger clearing inputs and outputs
clear_button.click(clear_inputs, inputs=None, outputs=[upload, download, image_display])
# Launch the interface
demo.launch()
# print(process_file("/content/give me a example table - give me a example table.pdf"))