File size: 3,207 Bytes
392b88f f4ff201 7e9a760 54ad393 3fec1fb 0428186 f4ff201 6fed0f7 fae7b1e ae9efe4 3fec1fb 70e3d12 3fec1fb 70e3d12 3fec1fb 2839abc 7e9a760 548031b 1291143 dba1359 ea3b1d6 7e9a760 ae9efe4 45bbd2a 3fec1fb 6fed0f7 a02443f 6fed0f7 ca74145 63aa355 3fec1fb 0a14984 3fec1fb f1ebf81 70e3d12 548031b f1ebf81 7e9a760 2839abc ae9efe4 7e9a760 63aa355 6fed0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
import torch
import random
#from controlnet_aux import OpenposeDetector
#from diffusers.utils import load_image
import gradio as gr
import gc
model_id = os.getenv("Model")
#stabilityai/stable-diffusion-xl-base-1.0 0 - base model
#Colossus_Project_XL 1 - better people
#Sevenof9_v3_sdxl 2 - nude women
model_url_list = ["stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
"Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors",
"Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors"]
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""
def generate(prompt, neg_prompt, samp_steps, guide_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)):
if seed < 0:
seed = random.randint(1,999999)
images = pipe(
prompt,
negative_prompt=neg_prompt,
num_inference_steps=samp_steps,
guidance_scale=guide_scale,
#cross_attention_kwargs={"scale": lora_scale},
num_images_per_prompt=batch_size,
height=height,
width=width,
generator=torch.manual_seed(seed),
).images
return [(img, f"Image {i+1}") for i, img in enumerate(images)]
def set_base_model(base_model_id):
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
global model_url_list
model_url = "https://huggingface.co/" + model_url_list[base_model_id]
pipe = StableDiffusionXLPipeline.from_single_file(
model_url,
torch_dtype = torch.float16,
variant = "fp16",
vae = vae,
use_safetensors = True,
use_auth_token="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"
)
pipe.to("cuda")
return pipe
with gr.Blocks(css=css) as demo:
with gr.Column():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
submit_btn = gr.Button("Generate", elem_classes="btn-green")
with gr.Row():
samp_steps = gr.Slider(1, 50, value=20, step=1, label="Sampling steps")
guide_scale = gr.Slider(1, 6, value=3, step=0.5, label="Guidance scale")
batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
with gr.Row():
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=999999, step=1)
height = gr.Slider(label="Height", value=1024, minimum=512, maximum=2048, step=16)
width = gr.Slider(label="Width", value=1024, minimum=512, maximum=2048, step=16)
gallery = gr.Gallery(label="Generated images", height=800)
submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True)
pipe = set_base_model(model_id)
demo.launch(debug=True) |