File size: 3,207 Bytes
392b88f
f4ff201
7e9a760
54ad393
 
3fec1fb
0428186
f4ff201
6fed0f7
 
 
 
 
 
fae7b1e
 
 
ae9efe4
3fec1fb
 
70e3d12
3fec1fb
 
 
 
70e3d12
3fec1fb
 
 
2839abc
7e9a760
 
548031b
 
 
 
 
1291143
dba1359
ea3b1d6
 
7e9a760
ae9efe4
45bbd2a
3fec1fb
6fed0f7
 
a02443f
6fed0f7
ca74145
 
 
 
 
 
 
 
 
 
63aa355
3fec1fb
0a14984
3fec1fb
f1ebf81
70e3d12
548031b
f1ebf81
 
7e9a760
2839abc
 
ae9efe4
 
7e9a760
63aa355
 
6fed0f7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
import torch
import random
#from controlnet_aux import OpenposeDetector
#from diffusers.utils import load_image
import gradio as gr
import gc

model_id = os.getenv("Model")

#stabilityai/stable-diffusion-xl-base-1.0  0 - base model
#Colossus_Project_XL                       1 - better people
#Sevenof9_v3_sdxl                          2 - nude women

model_url_list = ["stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
                 "Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors",
                 "Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors"]

css = """
.btn-green {
  background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
  border-color: #22c55e !important;
  color: #166534 !important;
}
.btn-green:hover {
  background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""

def generate(prompt, neg_prompt, samp_steps, guide_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)):
    if seed < 0:
        seed = random.randint(1,999999)
    images = pipe(
        prompt,
        negative_prompt=neg_prompt,
        num_inference_steps=samp_steps,
        guidance_scale=guide_scale,
        #cross_attention_kwargs={"scale": lora_scale},
        num_images_per_prompt=batch_size,
        height=height,
        width=width,
        generator=torch.manual_seed(seed),
    ).images
    return [(img, f"Image {i+1}") for i, img in enumerate(images)]
        
def set_base_model(base_model_id):
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    global model_url_list
    model_url = "https://huggingface.co/" + model_url_list[base_model_id]
    pipe = StableDiffusionXLPipeline.from_single_file(
        model_url,
        torch_dtype = torch.float16,
        variant = "fp16",
        vae = vae,
        use_safetensors = True,
        use_auth_token="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"
    )
    pipe.to("cuda")
    return pipe
    
with gr.Blocks(css=css) as demo:
    with gr.Column():
        prompt = gr.Textbox(label="Prompt")
        negative_prompt = gr.Textbox(label="Negative Prompt")
        submit_btn = gr.Button("Generate", elem_classes="btn-green")
        with gr.Row():
            samp_steps = gr.Slider(1, 50, value=20, step=1, label="Sampling steps")
            guide_scale = gr.Slider(1, 6, value=3, step=0.5, label="Guidance scale")
            batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
        with gr.Row():
            seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=999999, step=1)
            height = gr.Slider(label="Height", value=1024, minimum=512, maximum=2048, step=16)
            width = gr.Slider(label="Width", value=1024, minimum=512, maximum=2048, step=16)
        gallery = gr.Gallery(label="Generated images", height=800)
    submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True)

pipe = set_base_model(model_id)
demo.launch(debug=True)