File size: 13,658 Bytes
5c05d7a
2f36052
5c05d7a
2f36052
5c05d7a
 
2f36052
5c05d7a
 
 
e6abf6e
5c05d7a
 
e6abf6e
5c05d7a
 
 
 
 
 
 
 
 
9e2bc99
5c05d7a
 
 
2f36052
a46a8e7
05d82ce
dd5783d
5c05d7a
 
 
 
 
 
 
 
 
 
a46a8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79dc41f
a46a8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e830460
5240604
a46a8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5240604
a46a8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a03bb3
a46a8e7
2932f79
a46a8e7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import re
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load and preprocess the dataset
file_path = "cbinsights_data.csv"  # Replace with your actual file path

try:
    data = pd.read_csv(file_path, skiprows=1)
    logger.info("CSV file loaded successfully.")
except FileNotFoundError:
    logger.error(f"File not found: {file_path}")
    raise
except Exception as e:
    logger.error(f"Error loading CSV file: {e}")
    raise

# Standardize column names
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")

# Filter out Health since Healthcare is the correct Market Segment
data = data[data.industry != 'Health']

# Identify the valuation column
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()]
if len(valuation_columns) != 1:
    logger.error("Unable to identify a single valuation column.")
    raise ValueError("Dataset should contain exactly one column with 'valuation' in its name.")

valuation_column = valuation_columns[0]
logger.info(f"Using valuation column: {valuation_column}")

# Clean and prepare data
data["Valuation_Billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
data["Valuation_Billions"] = pd.to_numeric(data["Valuation_Billions"], errors='coerce')
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
data.rename(columns={
    "company": "Company",
    "date_joined": "Date_Joined",
    "country": "Country",
    "city": "City",
    "industry": "Industry",
    "select_investors": "Select_Investors"
}, inplace=True)

logger.info("Data cleaned and columns renamed.")

# Build investor-company mapping
def build_investor_company_mapping(df):
    mapping = {}
    for _, row in df.iterrows():
        company = row["Company"]
        investors = row["Select_Investors"]
        if pd.notnull(investors):
            for investor in investors.split(","):
                investor = investor.strip()
                if investor:
                    mapping.setdefault(investor, []).append(company)
    return mapping

investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")


# -------------------------
#  Valuation-Range Logic
# -------------------------
def filter_by_valuation_range(df, selected_valuation_range):
    """Filter dataframe by the specified valuation range in billions."""
    if selected_valuation_range == "All":
        return df  # No further filtering

    if selected_valuation_range == "1-5":
        return df[(df["Valuation_Billions"] >= 1) & (df["Valuation_Billions"] < 5)]
    elif selected_valuation_range == "5-10":
        return df[(df["Valuation_Billions"] >= 5) & (df["Valuation_Billions"] < 10)]
    elif selected_valuation_range == "10-15":
        return df[(df["Valuation_Billions"] >= 10) & (df["Valuation_Billions"] < 15)]
    elif selected_valuation_range == "15-20":
        return df[(df["Valuation_Billions"] >= 15) & (df["Valuation_Billions"] < 20)]
    elif selected_valuation_range == "20+":
        return df[df["Valuation_Billions"] >= 20]
    else:
        return df  # Fallback, should never happen


# Filter investors by country, industry, investor selection, company selection, and valuation range
def filter_investors(
    selected_country,
    selected_industry,
    selected_investors,
    selected_company,
    exclude_countries,
    exclude_industries,
    exclude_companies,
    exclude_investors,
    selected_valuation_range
):
    filtered_data = data.copy()

    # 1) Valuation range filter
    filtered_data = filter_by_valuation_range(filtered_data, selected_valuation_range)

    # 2) Now apply the existing filters:

    # Inclusion filters
    if selected_country != "All":
        filtered_data = filtered_data[filtered_data["Country"] == selected_country]
    if selected_industry != "All":
        filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
    if selected_company != "All":
        filtered_data = filtered_data[filtered_data["Company"] == selected_company]
    if selected_investors:
        pattern = '|'.join([re.escape(inv) for inv in selected_investors])
        filtered_data = filtered_data[filtered_data["Select_Investors"].str.contains(pattern, na=False)]

    # Exclusion filters
    if exclude_countries:
        filtered_data = filtered_data[~filtered_data["Country"].isin(exclude_countries)]
    if exclude_industries:
        filtered_data = filtered_data[~filtered_data["Industry"].isin(exclude_industries)]
    if exclude_companies:
        filtered_data = filtered_data[~filtered_data["Company"].isin(exclude_companies)]
    if exclude_investors:
        pattern = '|'.join([re.escape(inv) for inv in exclude_investors])
        filtered_data = filtered_data[~filtered_data["Select_Investors"].str.contains(pattern, na=False)]

    investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
    filtered_investors = list(investor_company_mapping_filtered.keys())
    return filtered_investors, filtered_data


# Generate Plotly graph
# NEW: We add selected_valuation_range so we can check if the user selected 15-20 or 20+
def generate_graph(investors, filtered_data, selected_valuation_range):
    if not investors:
        logger.warning("No investors selected.")
        return go.Figure()

    # Create a color map for investors
    unique_investors = investors
    num_colors = len(unique_investors)
    color_palette = [
        "#377eb8", "#e41a1c", "#4daf4a", "#984ea3",
        "#ff7f00", "#ffff33", "#a65628", "#f781bf", "#999999"
    ]
    while num_colors > len(color_palette):
        color_palette.extend(color_palette)

    investor_color_map = {investor: color_palette[i] for i, investor in enumerate(unique_investors)}

    G = nx.Graph()
    for investor in investors:
        companies = filtered_data[filtered_data["Select_Investors"].str.contains(re.escape(investor), na=False)]["Company"].tolist()
        for company in companies:
            G.add_node(company)
            G.add_node(investor)
            G.add_edge(investor, company)

    pos = nx.spring_layout(G, seed=1721, iterations=150)
    edge_x, edge_y = [], []

    for edge in G.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_x.extend([x0, x1, None])
        edge_y.extend([y0, y1, None])

    edge_trace = go.Scatter(
        x=edge_x,
        y=edge_y,
        line=dict(width=0.5, color='#aaaaaa'),
        hoverinfo='none',
        mode='lines'
    )

    node_x, node_y, node_text, node_textposition = [], [], [], []
    node_color, node_size, node_hovertext = [], [], []

    for node in G.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
        if node in investors:
            node_text.append(node)  # Add investor labels
            node_color.append(investor_color_map[node])
            node_size.append(30)
            node_hovertext.append(f"Investor: {node}")
            node_textposition.append('top center')
        else:
            valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].values
            industry = filtered_data.loc[filtered_data["Company"] == node, "Industry"].values
            size = valuation[0] * 5 if len(valuation) > 0 and not pd.isnull(valuation[0]) else 15
            node_size.append(max(size, 10))
            node_color.append("#a6d854")

            # Build the hover label text
            hovertext = f"Company: {node}"
            if len(industry) > 0 and not pd.isnull(industry[0]):
                hovertext += f"<br>Industry: {industry[0]}"
            if len(valuation) > 0 and not pd.isnull(valuation[0]):
                hovertext += f"<br>Valuation: ${valuation[0]:.2f}B"
            node_hovertext.append(hovertext)

            # NEW: If valuation range is 15–20 or 20+, show hovertext for all companies
            if selected_valuation_range in ["15-20", "20+"]:
                node_text.append(hovertext)  # show full text
                node_textposition.append('bottom center')
            else:
                # Old logic: only show the company name in certain conditions
                if (
                    (len(valuation) > 0 and valuation[0] is not None and valuation[0] > 10)  # Check if > 10B
                    or (len(filtered_data) < 15)
                    or (node in filtered_data.nlargest(5, "Valuation_Billions")["Company"].tolist())
                ):
                    node_text.append(node)  # Show just the company name
                    node_textposition.append('bottom center')
                else:
                    node_text.append("")  # Hide company label
                    node_textposition.append('bottom center')

    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        text=node_text,
        textposition=node_textposition,
        mode='markers+text',
        hoverinfo='text',
        hovertext=node_hovertext,
        textfont=dict(size=13),  # Adjust label font size
        marker=dict(
            showscale=False,
            size=node_size,
            color=node_color,
            line=dict(width=0.5, color='#333333')
        )
    )

    # Compute total market cap
    total_market_cap = filtered_data["Valuation_Billions"].sum()

    fig = go.Figure(data=[edge_trace, node_trace])

    fig.update_layout(
        title="",
        titlefont_size=28,
        margin=dict(l=20, r=20, t=60, b=20),
        hovermode='closest',
        width=1200,
        height=800,
        autosize=True,
        xaxis=dict(showgrid=False, zeroline=False, visible=False),
        yaxis=dict(showgrid=False, zeroline=False, visible=False),
        showlegend=False,  # Hide the legend to maximize space
        annotations=[
            dict(
                x=0.5, y=1.1, xref='paper', yref='paper',
                text=f"Combined Market Cap: ${total_market_cap:.1f} Billions",
                showarrow=False, font=dict(size=14), xanchor='center'
            )
        ]
    )

    return fig


# Gradio app function
def app(
    selected_country,
    selected_industry,
    selected_company,
    selected_investors,
    exclude_countries,
    exclude_industries,
    exclude_companies,
    exclude_investors,
    selected_valuation_range
):
    investors, filtered_data = filter_investors(
        selected_country,
        selected_industry,
        selected_investors,
        selected_company,
        exclude_countries,
        exclude_industries,
        exclude_companies,
        exclude_investors,
        selected_valuation_range
    )
    if not investors:
        return go.Figure()
    # NEW: Pass valuation_range to generate_graph
    graph = generate_graph(investors, filtered_data, selected_valuation_range)
    return graph


def main():
    country_list = ["All"] + sorted(data["Country"].dropna().unique())
    industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
    company_list = ["All"] + sorted(data["Company"].dropna().unique())
    investor_list = sorted(investor_company_mapping.keys())

    # Valuation range choices
    valuation_ranges = ["All", "1-5", "5-10", "10-15", "15-20", "20+"]

    with gr.Blocks(title="Venture Networks Visualization") as demo:
        gr.Markdown("# Venture Networks Visualization")

        with gr.Row():
            country_filter = gr.Dropdown(choices=country_list, label="Country", value="All")
            industry_filter = gr.Dropdown(choices=industry_list, label="Industry", value="All")
            company_filter = gr.Dropdown(choices=company_list, label="Company", value="All")
            investor_filter = gr.Dropdown(choices=investor_list, label="Select Investors", value=[], multiselect=True)

        with gr.Row():
            valuation_range_filter = gr.Dropdown(
                choices=valuation_ranges,
                label="Valuation Range (Billions)",
                value="All"
            )
            exclude_country_filter = gr.Dropdown(choices=country_list[1:], label="Exclude Country", value=[], multiselect=True)
            exclude_industry_filter = gr.Dropdown(choices=industry_list[1:], label="Exclude Industry", value=[], multiselect=True)
            exclude_company_filter = gr.Dropdown(choices=company_list[1:], label="Exclude Company", value=[], multiselect=True)
            exclude_investor_filter = gr.Dropdown(choices=investor_list, label="Exclude Investors", value=[], multiselect=True)

        graph_output = gr.Plot(label="Network Graph")

        inputs = [
            country_filter, 
            industry_filter, 
            company_filter, 
            investor_filter,
            exclude_country_filter, 
            exclude_industry_filter, 
            exclude_company_filter, 
            exclude_investor_filter,
            valuation_range_filter
        ]
        outputs = [graph_output]

        # Set up event triggers for all inputs
        for input_control in inputs:
            input_control.change(app, inputs, outputs)

        gr.Markdown("**Instructions:** Use the dropdowns to filter the network graph. For valuation ranges 15–20 or 20+, you’ll see each company's info label without hovering.")
        gr.Markdown("**Note:** All companies are in green, while venture firms have different colors. The diameter of the company circle varies proportionate to the valuation.")

    
    demo.launch()


if __name__ == "__main__":
    main()