File size: 6,325 Bytes
b474ae1
ec9d21a
06f01b3
b474ae1
d33fe62
dfe1769
 
1fa796c
5b4c268
00c05fa
c490b83
00c05fa
ae610aa
 
 
 
f146007
 
5b4c268
d33fe62
 
5a73339
 
92494e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33fe62
 
 
 
 
 
 
 
ae610aa
 
 
 
f146007
ae610aa
 
 
b474ae1
d33fe62
 
 
 
 
 
 
 
 
5b4c268
ae610aa
 
 
 
c490b83
d33fe62
88c83f6
dfe1769
a1792a1
88c83f6
 
a1792a1
1fa796c
dfe1769
f0741dc
f7a7a3a
13f0f94
88c83f6
dfe1769
 
24b6a6d
dfe1769
 
 
 
ae610aa
 
 
 
dfe1769
 
88c83f6
d33fe62
c490b83
88c83f6
dfe1769
c490b83
d33fe62
c490b83
d33fe62
c490b83
 
8760634
c490b83
 
 
 
 
 
 
dfe1769
ae610aa
 
 
 
c490b83
06f01b3
c490b83
d9a0200
c490b83
d9a0200
c490b83
b474ae1
c490b83
 
 
 
 
 
 
 
 
8cb3a33
c490b83
00c05fa
c490b83
 
 
dfe1769
c490b83
 
 
 
dfe1769
 
c490b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe1769
c490b83
 
 
d9a0200
c490b83
 
 
 
 
 
d9a0200
c490b83
 
 
 
 
 
 
 
5b4c268
00c05fa
 
 
 
ae610aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import json
import openai
import gradio as gr
import duckdb
from functools import lru_cache
import pandas as pd
import plotly.express as px
import os

# Set OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")

# =========================
# Configuration and Setup
# =========================

# Load the Parquet dataset path
dataset_path = 'sample_contract_df.parquet'  # Update with your Parquet file path

# Provided schema
schema = [
    {"column_name": "department_ind_agency", "column_type": "VARCHAR"},
    {"column_name": "cgac", "column_type": "BIGINT"},
    {"column_name": "sub_tier", "column_type": "VARCHAR"},
    {"column_name": "fpds_code", "column_type": "VARCHAR"},
    {"column_name": "office", "column_type": "VARCHAR"},
    {"column_name": "aac_code", "column_type": "VARCHAR"},
    {"column_name": "posteddate", "column_type": "VARCHAR"},
    {"column_name": "type", "column_type": "VARCHAR"},
    {"column_name": "basetype", "column_type": "VARCHAR"},
    {"column_name": "popstreetaddress", "column_type": "VARCHAR"},
    {"column_name": "popcity", "column_type": "VARCHAR"},
    {"column_name": "popstate", "column_type": "VARCHAR"},
    {"column_name": "popzip", "column_type": "VARCHAR"},
    {"column_name": "popcountry", "column_type": "VARCHAR"},
    {"column_name": "active", "column_type": "VARCHAR"},
    {"column_name": "awardnumber", "column_type": "VARCHAR"},
    {"column_name": "awarddate", "column_type": "VARCHAR"},
    {"column_name": "award", "column_type": "DOUBLE"},
    {"column_name": "awardee", "column_type": "VARCHAR"},
    {"column_name": "state", "column_type": "VARCHAR"},
    {"column_name": "city", "column_type": "VARCHAR"},
    {"column_name": "zipcode", "column_type": "VARCHAR"},
    {"column_name": "countrycode", "column_type": "VARCHAR"}
]

@lru_cache(maxsize=1)
def get_schema():
    return schema

COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}

# =========================
# Database Interaction
# =========================

def load_dataset_schema():
    """
    Loads the dataset schema into DuckDB by creating a view.
    """
    con = duckdb.connect()
    try:
        con.execute("DROP VIEW IF EXISTS contract_data")
        con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        return True
    except Exception as e:
        print(f"Error loading dataset schema: {e}")
        return False
    finally:
        con.close()

# =========================
# OpenAI API Integration
# =========================

def parse_query(nl_query):
    """
    Converts a natural language query into a SQL query using OpenAI's API.
    """
    messages = [
        {"role": "system", "content": "Convert natural language queries to SQL queries for 'contract_data'."},
        {"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
    ]

    try:
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=messages,
            temperature=0,
            max_tokens=150,
        )
        sql_query = response.choices[0].message.content.strip()
        return sql_query
    except Exception as e:
        return f"Error generating SQL query: {e}"

# =========================
# Plotting Utilities
# =========================

def detect_plot_intent(nl_query):
    """
    Detects if the user's query involves plotting.
    """
    plot_keywords = ['plot', 'graph', 'chart', 'distribution', 'visualize', 'trend', 'histogram', 'bar', 'line']
    return any(keyword in nl_query.lower() for keyword in plot_keywords)

def generate_plot_code(sql_query, result_df):
    """
    Generates plotting code based on the SQL query and result DataFrame.
    """
    if not detect_plot_intent(sql_query):
        return None

    columns = result_df.columns.tolist()
    if len(columns) >= 2:
        fig = px.bar(result_df, x=columns[0], y=columns[1], title='Generated Plot')
        fig.update_layout(title_x=0.5)
        return fig
    else:
        return None

# =========================
# Gradio Application UI
# =========================

with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
    gr.Markdown("""
    ## Parquet Data Explorer

    **Query and visualize data effortlessly.**

    """, elem_id="main-title")

    with gr.Row():
        with gr.Column(scale=1):
            query = gr.Textbox(
                label="Ask a question about the data",
                placeholder='e.g., "What are the total awards over 1M in California?"',
                lines=1
            )
            # Display schema next to the input
            schema_display = gr.JSON(value=json.loads(json.dumps(get_schema(), indent=2)), visible=False)

            error_out = gr.Alert(variant="error", visible=False)

        with gr.Column(scale=2):
            results_out = gr.DataFrame(label="Results")
            plot_out = gr.Plot()

    def on_query_submit(nl_query):
        sql_query = parse_query(nl_query)
        if sql_query.startswith("Error"):
            return gr.update(visible=True, value=sql_query), None, None
        result_df, error_msg = execute_query(sql_query)
        if error_msg:
            return gr.update(visible=True, value=error_msg), None, None
        fig = generate_plot_code(nl_query, result_df)
        return gr.update(visible=False), result_df, fig

    def on_focus():
        return gr.update(visible=True)

    query.submit(
        fn=on_query_submit,
        inputs=query,
        outputs=[error_out, results_out, plot_out]
    )
    query.focus(
        fn=on_focus,
        outputs=schema_display
    )

# =========================
# Helper Functions
# =========================

def execute_query(sql_query):
    """
    Executes the SQL query and returns the results.
    """
    if sql_query.startswith("Error"):
        return None, sql_query

    try:
        con = duckdb.connect()
        con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        result_df = con.execute(sql_query).fetchdf()
        con.close()
        return result_df, ""
    except Exception as e:
        return None, f"Error executing query: {e}"

# =========================
# Launch the Gradio App
# =========================

demo.launch()