Spaces:
Sleeping
Sleeping
File size: 6,835 Bytes
b474ae1 ec9d21a 06f01b3 b474ae1 d33fe62 dfe1769 1fa796c 88c83f6 5b4c268 00c05fa 88c83f6 00c05fa ae610aa f146007 5b4c268 d33fe62 5a73339 88c83f6 d33fe62 ae610aa f146007 ae610aa b474ae1 d33fe62 5b4c268 ae610aa a1792a1 d33fe62 88c83f6 dfe1769 a1792a1 88c83f6 a1792a1 1fa796c dfe1769 59c1824 13f0f94 88c83f6 dfe1769 88c83f6 dfe1769 ae610aa dfe1769 88c83f6 d33fe62 88c83f6 dfe1769 a1792a1 d33fe62 88c83f6 d33fe62 dfe1769 a1792a1 dfe1769 1fa796c dfe1769 1fa796c dfe1769 b474ae1 d33fe62 88c83f6 d33fe62 1fa796c 88c83f6 1fa796c 8760634 d33fe62 8760634 dfe1769 1fa796c dfe1769 88c83f6 dfe1769 ae610aa 06f01b3 dfe1769 8760634 dfe1769 00c05fa 88c83f6 06f01b3 b474ae1 8760634 88c83f6 8760634 dfe1769 8760634 d33fe62 dfe1769 b474ae1 8760634 88c83f6 8cb3a33 00c05fa a1792a1 00c05fa a1792a1 dfe1769 00c05fa dfe1769 00c05fa dfe1769 88c83f6 5b4c268 00c05fa ae610aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import json
import openai
import gradio as gr
import duckdb
from functools import lru_cache
import pandas as pd
import plotly.express as px
import os
from openai import OpenAI
# Set OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# =========================
# Configuration and Setup
# =========================
# Load the Parquet dataset path
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path
# Provided schema
schema = [
{"column_name": "department_ind_agency", "column_type": "VARCHAR"},
{"column_name": "cgac", "column_type": "BIGINT"},
# Additional columns go here...
]
@lru_cache(maxsize=1)
def get_schema():
return schema
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
# =========================
# Database Interaction
# =========================
def load_dataset_schema():
"""
Loads the dataset schema into DuckDB by creating a view.
"""
con = duckdb.connect()
try:
con.execute("DROP VIEW IF EXISTS contract_data")
con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
return True
except Exception as e:
print(f"Error loading dataset schema: {e}")
return False
finally:
con.close()
# =========================
# OpenAI API Integration
# =========================
async def parse_query(nl_query):
"""
Converts a natural language query into a SQL query using OpenAI's API.
"""
messages = [
{"role": "system", "content": "Convert natural language queries to SQL queries for 'contract_data'."},
{"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
]
try:
response = openai.chat.completions.create(
model="gpt-4",
messages=messages,
temperature=0,
max_tokens=150,
)
sql_query = response.choices[0].message.content.strip()
return sql_query
except Exception as e:
return f"Error generating SQL query: {e}"
# =========================
# Plotting Utilities
# =========================
def detect_plot_intent(nl_query):
"""
Detects if the user's query involves plotting.
"""
plot_keywords = ['plot', 'graph', 'chart', 'distribution', 'visualize']
return any(keyword in nl_query.lower() for keyword in plot_keywords)
async def generate_sql_and_plot_code(query):
"""
Generates SQL query and optional plotting code.
"""
is_plot = detect_plot_intent(query)
sql_query = await parse_query(query)
plot_code = ""
if is_plot and not sql_query.startswith("Error"):
plot_code = """
import plotly.express as px
fig = px.bar(result_df, x='x_column', y='y_column', title='Generated Plot')
fig.update_layout(title_x=0.5)
"""
return sql_query, plot_code
def execute_query(sql_query):
"""
Executes the SQL query and returns the results.
"""
if sql_query.startswith("Error"):
return None, sql_query
try:
con = duckdb.connect()
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
result_df = con.execute(sql_query).fetchdf()
con.close()
return result_df, ""
except Exception as e:
return None, f"Error executing query: {e}"
def generate_plot(plot_code, result_df):
"""
Executes the plot code to generate a plot from the result DataFrame.
"""
if not plot_code.strip():
return None, "No plot code provided."
try:
columns = result_df.columns.tolist()
if len(columns) < 2:
return None, "Not enough columns to plot."
plot_code = plot_code.replace('x_column', columns[0])
plot_code = plot_code.replace('y_column', columns[1])
local_vars = {'result_df': result_df, 'px': px}
exec(plot_code, {}, local_vars)
fig = local_vars.get('fig', None)
return fig, "" if fig else "Plot could not be generated."
except Exception as e:
return None, f"Error generating plot: {e}"
# =========================
# Gradio Application UI
# =========================
with gr.Blocks() as demo:
gr.Markdown("""
# Parquet SQL Query and Plotting App
**Query and visualize data** in `sample_contract_df.parquet`
## Instructions
1. **Describe the data you want**: e.g., `Show awards over 1M in CA`
2. **Generate SQL**: Click "Generate SQL" to see the SQL query.
3. **Execute Query**: Run the query to view results and plots.
4. **Dataset Schema**: See available columns and types in the "Schema" tab.
""")
with gr.Tabs():
with gr.TabItem("Query Data"):
with gr.Row():
with gr.Column(scale=1):
query = gr.Textbox(label="Natural Language Query", placeholder='e.g., "Awards > 1M in CA"')
btn_generate = gr.Button("Generate SQL")
sql_out = gr.Code(label="Generated SQL Query", language="sql")
plot_code_out = gr.Code(label="Generated Plot Code", language="python")
btn_execute = gr.Button("Execute Query")
error_out = gr.Markdown("", visible=False)
with gr.Column(scale=2):
results_out = gr.Dataframe(label="Query Results", interactive=False)
plot_out = gr.Plot(label="Plot")
with gr.TabItem("Dataset Schema"):
gr.Markdown("### Dataset Schema")
schema_display = gr.JSON(label="Schema", value=json.loads(json.dumps(get_schema(), indent=2)))
# =========================
# Click Event Handlers
# =========================
async def on_generate_click(nl_query):
"""
Handles the "Generate SQL" button click event.
"""
sql_query, plot_code = await generate_sql_and_plot_code(nl_query)
return sql_query, plot_code
def on_execute_click(sql_query, plot_code):
"""
Handles the "Execute Query" button click event.
"""
result_df, error_msg = execute_query(sql_query)
if error_msg:
return None, None, error_msg
if plot_code.strip():
fig, plot_error = generate_plot(plot_code, result_df)
if plot_error:
return result_df, None, plot_error
else:
return result_df, fig, ""
else:
return result_df, None, ""
btn_generate.click(fn=on_generate_click, inputs=query, outputs=[sql_out, plot_code_out])
btn_execute.click(fn=on_execute_click, inputs=[sql_out, plot_code_out], outputs=[results_out, plot_out, error_out])
# =========================
# Launch the Gradio App
# =========================
demo.launch()
|