File size: 6,835 Bytes
b474ae1
ec9d21a
06f01b3
b474ae1
d33fe62
dfe1769
 
1fa796c
88c83f6
5b4c268
00c05fa
88c83f6
00c05fa
ae610aa
 
 
 
f146007
 
5b4c268
d33fe62
 
5a73339
 
88c83f6
d33fe62
 
 
 
 
 
 
 
ae610aa
 
 
 
f146007
ae610aa
 
 
b474ae1
d33fe62
 
 
 
 
 
 
 
 
5b4c268
ae610aa
 
 
 
a1792a1
d33fe62
88c83f6
dfe1769
a1792a1
88c83f6
 
a1792a1
1fa796c
dfe1769
59c1824
 
13f0f94
88c83f6
dfe1769
 
88c83f6
dfe1769
 
 
 
ae610aa
 
 
 
dfe1769
 
88c83f6
d33fe62
88c83f6
 
dfe1769
a1792a1
d33fe62
88c83f6
d33fe62
dfe1769
a1792a1
dfe1769
1fa796c
dfe1769
 
1fa796c
 
dfe1769
 
b474ae1
 
d33fe62
88c83f6
d33fe62
1fa796c
88c83f6
1fa796c
8760634
 
d33fe62
8760634
 
 
 
 
 
dfe1769
 
 
 
 
 
 
 
 
 
 
 
1fa796c
 
dfe1769
88c83f6
dfe1769
 
 
ae610aa
 
 
 
06f01b3
 
dfe1769
8760634
dfe1769
00c05fa
 
 
88c83f6
 
 
 
06f01b3
b474ae1
8760634
 
 
 
88c83f6
8760634
 
dfe1769
8760634
 
 
d33fe62
dfe1769
b474ae1
8760634
 
88c83f6
8cb3a33
00c05fa
 
 
 
a1792a1
00c05fa
 
 
a1792a1
dfe1769
 
 
00c05fa
 
 
dfe1769
 
 
 
 
00c05fa
 
 
 
dfe1769
 
 
88c83f6
 
5b4c268
00c05fa
 
 
 
ae610aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import json
import openai
import gradio as gr
import duckdb
from functools import lru_cache
import pandas as pd
import plotly.express as px
import os
from openai import OpenAI

# Set OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# =========================
# Configuration and Setup
# =========================

# Load the Parquet dataset path
dataset_path = 'sample_contract_df.parquet'  # Update with your Parquet file path

# Provided schema
schema = [
    {"column_name": "department_ind_agency", "column_type": "VARCHAR"},
    {"column_name": "cgac", "column_type": "BIGINT"},
    # Additional columns go here...
]

@lru_cache(maxsize=1)
def get_schema():
    return schema

COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}

# =========================
# Database Interaction
# =========================

def load_dataset_schema():
    """
    Loads the dataset schema into DuckDB by creating a view.
    """
    con = duckdb.connect()
    try:
        con.execute("DROP VIEW IF EXISTS contract_data")
        con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        return True
    except Exception as e:
        print(f"Error loading dataset schema: {e}")
        return False
    finally:
        con.close()

# =========================
# OpenAI API Integration
# =========================

async def parse_query(nl_query):
    """
    Converts a natural language query into a SQL query using OpenAI's API.
    """
    messages = [
        {"role": "system", "content": "Convert natural language queries to SQL queries for 'contract_data'."},
        {"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
    ]

    try:
        response =  openai.chat.completions.create(
            model="gpt-4",
            messages=messages,
            temperature=0,
            max_tokens=150,
        )
        sql_query = response.choices[0].message.content.strip()
        return sql_query
    except Exception as e:
        return f"Error generating SQL query: {e}"

# =========================
# Plotting Utilities
# =========================

def detect_plot_intent(nl_query):
    """
    Detects if the user's query involves plotting.
    """
    plot_keywords = ['plot', 'graph', 'chart', 'distribution', 'visualize']
    return any(keyword in nl_query.lower() for keyword in plot_keywords)

async def generate_sql_and_plot_code(query):
    """
    Generates SQL query and optional plotting code.
    """
    is_plot = detect_plot_intent(query)
    sql_query = await parse_query(query)
    plot_code = ""
    if is_plot and not sql_query.startswith("Error"):
        plot_code = """
import plotly.express as px
fig = px.bar(result_df, x='x_column', y='y_column', title='Generated Plot')
fig.update_layout(title_x=0.5)
"""
    return sql_query, plot_code

def execute_query(sql_query):
    """
    Executes the SQL query and returns the results.
    """
    if sql_query.startswith("Error"):
        return None, sql_query

    try:
        con = duckdb.connect()
        con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        result_df = con.execute(sql_query).fetchdf()
        con.close()
        return result_df, ""
    except Exception as e:
        return None, f"Error executing query: {e}"

def generate_plot(plot_code, result_df):
    """
    Executes the plot code to generate a plot from the result DataFrame.
    """
    if not plot_code.strip():
        return None, "No plot code provided."
    try:
        columns = result_df.columns.tolist()
        if len(columns) < 2:
            return None, "Not enough columns to plot."
        plot_code = plot_code.replace('x_column', columns[0])
        plot_code = plot_code.replace('y_column', columns[1])
        local_vars = {'result_df': result_df, 'px': px}
        exec(plot_code, {}, local_vars)
        fig = local_vars.get('fig', None)
        return fig, "" if fig else "Plot could not be generated."
    except Exception as e:
        return None, f"Error generating plot: {e}"

# =========================
# Gradio Application UI
# =========================

with gr.Blocks() as demo:
    gr.Markdown("""
    # Parquet SQL Query and Plotting App

    **Query and visualize data** in `sample_contract_df.parquet`

    ## Instructions

    1. **Describe the data you want**: e.g., `Show awards over 1M in CA`
    2. **Generate SQL**: Click "Generate SQL" to see the SQL query.
    3. **Execute Query**: Run the query to view results and plots.
    4. **Dataset Schema**: See available columns and types in the "Schema" tab.
    """)

    with gr.Tabs():
        with gr.TabItem("Query Data"):
            with gr.Row():
                with gr.Column(scale=1):
                    query = gr.Textbox(label="Natural Language Query", placeholder='e.g., "Awards > 1M in CA"')
                    btn_generate = gr.Button("Generate SQL")
                    sql_out = gr.Code(label="Generated SQL Query", language="sql")
                    plot_code_out = gr.Code(label="Generated Plot Code", language="python")
                    btn_execute = gr.Button("Execute Query")
                    error_out = gr.Markdown("", visible=False)
                with gr.Column(scale=2):
                    results_out = gr.Dataframe(label="Query Results", interactive=False)
                    plot_out = gr.Plot(label="Plot")

        with gr.TabItem("Dataset Schema"):
            gr.Markdown("### Dataset Schema")
            schema_display = gr.JSON(label="Schema", value=json.loads(json.dumps(get_schema(), indent=2)))

    # =========================
    # Click Event Handlers
    # =========================

    async def on_generate_click(nl_query):
        """
        Handles the "Generate SQL" button click event.
        """
        sql_query, plot_code = await generate_sql_and_plot_code(nl_query)
        return sql_query, plot_code

    def on_execute_click(sql_query, plot_code):
        """
        Handles the "Execute Query" button click event.
        """
        result_df, error_msg = execute_query(sql_query)
        if error_msg:
            return None, None, error_msg
        if plot_code.strip():
            fig, plot_error = generate_plot(plot_code, result_df)
            if plot_error:
                return result_df, None, plot_error
            else:
                return result_df, fig, ""
        else:
            return result_df, None, ""

    btn_generate.click(fn=on_generate_click, inputs=query, outputs=[sql_out, plot_code_out])
    btn_execute.click(fn=on_execute_click, inputs=[sql_out, plot_code_out], outputs=[results_out, plot_out, error_out])

# =========================
# Launch the Gradio App
# =========================

demo.launch()