Spaces:
Sleeping
Sleeping
File size: 8,931 Bytes
b474ae1 ec9d21a 06f01b3 b474ae1 991b597 d33fe62 1fa796c 5b4c268 ae610aa 94bf8f1 f146007 5b4c268 d33fe62 5a73339 92494e9 d33fe62 fe85696 d33fe62 fe85696 04fd164 ae610aa c490b83 a1792a1 94bf8f1 88c83f6 a1792a1 1fa796c dfe1769 e22a587 590f6d5 13f0f94 88c83f6 dfe1769 238955b c864c93 04fd164 dfe1769 04fd164 dfe1769 b89b3ba 653fb3b b89b3ba dfe1769 ae610aa 12e11fb 86317c4 12e11fb 281c128 bbd879c 8d55455 40a0ccc 8d55455 12e11fb efc74be 12e11fb 281c128 efc74be 86317c4 281c128 86317c4 12e11fb 86317c4 9b64a97 12e11fb 281c128 b89b3ba 50558de 63ee7c3 86317c4 00c05fa 94bf8f1 f5a9d48 94bf8f1 dfe1769 04fd164 281c128 12e11fb 04fd164 281c128 12e11fb 94bf8f1 04fd164 281c128 12e11fb 04fd164 281c128 12e11fb 281c128 04fd164 12e11fb 63ee7c3 12e11fb 63ee7c3 c27620c 04fd164 c27620c 04fd164 12e11fb 04fd164 12e11fb 774e93a a28e161 86317c4 12e11fb 86317c4 63ee7c3 12e11fb c27620c 3b785aa 12e11fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import json
import openai
import gradio as gr
import duckdb
import tempfile
from functools import lru_cache
import os
# =========================
# Configuration and Setup
# =========================
openai.api_key = os.getenv("OPENAI_API_KEY")
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path
schema = [
{"column_name": "department_ind_agency", "column_type": "VARCHAR"},
{"column_name": "cgac", "column_type": "BIGINT"},
{"column_name": "sub_tier", "column_type": "VARCHAR"},
{"column_name": "fpds_code", "column_type": "VARCHAR"},
{"column_name": "office", "column_type": "VARCHAR"},
{"column_name": "aac_code", "column_type": "VARCHAR"},
{"column_name": "posteddate", "column_type": "VARCHAR"},
{"column_name": "type", "column_type": "VARCHAR"},
{"column_name": "basetype", "column_type": "VARCHAR"},
{"column_name": "popstreetaddress", "column_type": "VARCHAR"},
{"column_name": "popcity", "column_type": "VARCHAR"},
{"column_name": "popstate", "column_type": "VARCHAR"},
{"column_name": "popzip", "column_type": "VARCHAR"},
{"column_name": "popcountry", "column_type": "VARCHAR"},
{"column_name": "active", "column_type": "VARCHAR"},
{"column_name": "awardnumber", "column_type": "VARCHAR"},
{"column_name": "awarddate", "column_type": "VARCHAR"},
{"column_name": "award", "column_type": "DOUBLE"},
{"column_name": "awardee", "column_type": "VARCHAR"},
{"column_name": "state", "column_type": "VARCHAR"},
{"column_name": "city", "column_type": "VARCHAR"},
{"column_name": "zipcode", "column_type": "VARCHAR"},
{"column_name": "countrycode", "column_type": "VARCHAR"}
]
columns = [ "department_ind_agency", "cgac","sub_tier","fpds_code", "office","aac_code",
"posteddate", "type","basetype","popstreetaddress","popcity","popstate",
"popzip", "popcountry", "active","awardnumber","awarddate","award",
"awardee","state","city", "zipcode", "countrycode"
]
@lru_cache(maxsize=1)
def get_schema():
return schema
@lru_cache(maxsize=1)
def get_columns():
return columns
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
# =========================
# OpenAI API Integration
# =========================
def parse_query(nl_query):
messages = [
{"role": "system", "content": "You are an assistant that converts natural language queries into SQL queries for the 'contract_data' table."},
{"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
]
try:
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
temperature=0,
max_tokens=150,
)
sql_query = response.choices[0].message.content.strip()
# Remove surrounding backticks and formatting artifacts
if sql_query.startswith("```") and sql_query.endswith("```"):
sql_query = sql_query[sql_query.find('\n')+1:sql_query.rfind('\n')].strip()
return sql_query, ""
except Exception as e:
return "", f"Error generating SQL query: {e}"
# =========================
# Database Interaction
# =========================
def execute_sql_query(sql_query):
try:
con = duckdb.connect()
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}' WHERE awardee != '' AND state != '' AND awardee != 'null'")
result_df = con.execute(sql_query).fetchdf()
con.close()
return result_df, ""
except Exception as e:
return None, f"Error executing query: {e}"
# =========================
# Gradio Application UI
# =========================
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 style="text-align:center;">π Text-to-SQL Contract Data Explorer</h1>
<p style="text-align:center; font-size:1.2em;">Analyze US Government contract data using natural language queries.</p>
""")
with gr.Row():
with gr.Column(scale=1, min_width=350):
gr.Markdown("### π‘ Example Queries")
with gr.Column():
example_queries = [
"Show the top 10 departments by total award amount.",
"List contracts where the award amount exceeds $5,000,000.",
"Find the top 5 awardees by number of contracts.",
"Display contracts awarded after 2020 in New York.",
"What is the total award amount by state?",
"Find all states where the total award amount exceeds $500,000,000."
]
example_buttons = []
for i, query in enumerate(example_queries):
btn = gr.Button(query, variant="link", size="sm", interactive=True)
example_buttons.append(btn)
gr.Markdown("### π Enter Your Query")
query_input = gr.Textbox(
label="",
placeholder='e.g., "What are the total awards over $1M in California?"',
lines=2
)
btn_generate_sql = gr.Button("π Generate SQL Query", variant="primary")
sql_query_out = gr.Code(label="π οΈ Generated SQL Query", language="sql")
btn_execute_query = gr.Button("π Execute Query", variant="secondary")
error_out = gr.Markdown("", visible=False, elem_id="error_message")
with gr.Accordion("πΆ Dataset Schema", open=False):
gr.JSON(get_schema(), label="Schema")
with gr.Column(scale=2):
gr.Markdown("### πΆ Query Results")
results_out = gr.DataFrame(label="", interactive=False, row_count=10)
status_info = gr.Markdown("", visible=False, elem_id="status_info")
# =========================
# Event Functions
# =========================
def generate_sql(nl_query):
if not nl_query.strip():
return "", "β οΈ Please enter a natural language query."
sql_query, error = parse_query(nl_query)
if error:
return "", f"β {error}"
return sql_query, ""
def execute_query(sql_query):
if not sql_query.strip():
return None, "β οΈ Please generate an SQL query first."
result_df, error = execute_sql_query(sql_query)
if error:
return None, f"β {error}"
if result_df.empty:
return None, "βΉοΈ The query returned no results."
return result_df, ""
def handle_example_click(example_query):
sql_query, error = parse_query(example_query)
if error:
return "", f"β {error}", None
result_df, exec_error = execute_sql_query(sql_query)
if exec_error:
return sql_query, f"β {exec_error}", None
return sql_query, "", result_df
# =========================
# Button Click Event Handlers
# =========================
btn_generate_sql.click(
fn=generate_sql,
inputs=query_input,
outputs=[sql_query_out, error_out]
)
btn_execute_query.click(
fn=execute_query,
inputs=sql_query_out,
outputs=[results_out, error_out]
)
# Assign click events to example buttons
for btn, query in zip(example_buttons, example_queries):
btn.click(
fn=lambda q=query: handle_example_click(q),
inputs=None,
outputs=[sql_query_out, error_out, results_out]
)
# Add a Gradio File output component for the download functionality
download_csv_btn = gr.File(label="π₯ Download CSV", visible=False)
# Function to save the results to a CSV and return the file path
def save_to_csv(results_df):
if results_df is None or results_df.empty:
return None, "β οΈ No results to download."
try:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
results_df.to_csv(temp_file.name, index=False)
return temp_file.name, ""
except Exception as e:
return None, f"β Error generating CSV: {e}"
# Add functionality to generate and show the download link for the CSV
def generate_download(results_df):
file_path, error = save_to_csv(results_df)
if error:
return None, f"β {error}"
return file_path, ""
# Update the Gradio event handlers
btn_execute_query.click(
fn=execute_query,
inputs=sql_query_out,
outputs=[results_out, error_out]
)
btn_execute_query.click(
fn=generate_download,
inputs=results_out,
outputs=[download_csv_btn, error_out]
)
# Launch the Gradio App
demo.queue().launch()
|