File size: 8,931 Bytes
b474ae1
ec9d21a
06f01b3
b474ae1
991b597
d33fe62
1fa796c
5b4c268
ae610aa
 
 
 
94bf8f1
f146007
5b4c268
d33fe62
5a73339
 
92494e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33fe62
 
fe85696
 
 
 
 
 
d33fe62
 
 
 
fe85696
 
 
 
04fd164
 
ae610aa
 
 
 
c490b83
a1792a1
94bf8f1
88c83f6
a1792a1
1fa796c
dfe1769
e22a587
590f6d5
13f0f94
88c83f6
dfe1769
 
238955b
c864c93
 
 
04fd164
dfe1769
04fd164
dfe1769
b89b3ba
 
 
 
 
 
 
653fb3b
b89b3ba
 
 
 
 
dfe1769
ae610aa
 
 
 
12e11fb
 
86317c4
12e11fb
 
 
281c128
bbd879c
 
 
8d55455
 
 
 
 
 
40a0ccc
 
8d55455
 
 
 
 
 
12e11fb
efc74be
12e11fb
 
281c128
efc74be
 
86317c4
 
281c128
86317c4
 
12e11fb
86317c4
9b64a97
12e11fb
281c128
b89b3ba
50558de
63ee7c3
86317c4
00c05fa
94bf8f1
f5a9d48
94bf8f1
dfe1769
04fd164
281c128
12e11fb
04fd164
281c128
12e11fb
 
94bf8f1
04fd164
281c128
12e11fb
04fd164
281c128
12e11fb
 
 
281c128
04fd164
12e11fb
 
 
63ee7c3
12e11fb
 
63ee7c3
 
c27620c
04fd164
 
 
c27620c
04fd164
 
 
12e11fb
04fd164
 
 
 
 
12e11fb
774e93a
a28e161
86317c4
 
 
12e11fb
86317c4
63ee7c3
12e11fb
c27620c
3b785aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e11fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import json
import openai
import gradio as gr
import duckdb
import tempfile
from functools import lru_cache
import os

# =========================
# Configuration and Setup
# =========================

openai.api_key = os.getenv("OPENAI_API_KEY")
dataset_path = 'sample_contract_df.parquet'  # Update with your Parquet file path

schema = [
    {"column_name": "department_ind_agency", "column_type": "VARCHAR"},
    {"column_name": "cgac", "column_type": "BIGINT"},
    {"column_name": "sub_tier", "column_type": "VARCHAR"},
    {"column_name": "fpds_code", "column_type": "VARCHAR"},
    {"column_name": "office", "column_type": "VARCHAR"},
    {"column_name": "aac_code", "column_type": "VARCHAR"},
    {"column_name": "posteddate", "column_type": "VARCHAR"},
    {"column_name": "type", "column_type": "VARCHAR"},
    {"column_name": "basetype", "column_type": "VARCHAR"},
    {"column_name": "popstreetaddress", "column_type": "VARCHAR"},
    {"column_name": "popcity", "column_type": "VARCHAR"},
    {"column_name": "popstate", "column_type": "VARCHAR"},
    {"column_name": "popzip", "column_type": "VARCHAR"},
    {"column_name": "popcountry", "column_type": "VARCHAR"},
    {"column_name": "active", "column_type": "VARCHAR"},
    {"column_name": "awardnumber", "column_type": "VARCHAR"},
    {"column_name": "awarddate", "column_type": "VARCHAR"},
    {"column_name": "award", "column_type": "DOUBLE"},
    {"column_name": "awardee", "column_type": "VARCHAR"},
    {"column_name": "state", "column_type": "VARCHAR"},
    {"column_name": "city", "column_type": "VARCHAR"},
    {"column_name": "zipcode", "column_type": "VARCHAR"},
    {"column_name": "countrycode", "column_type": "VARCHAR"}
]

columns = [ "department_ind_agency", "cgac","sub_tier","fpds_code", "office","aac_code",
           "posteddate", "type","basetype","popstreetaddress","popcity","popstate", 
           "popzip", "popcountry", "active","awardnumber","awarddate","award", 
           "awardee","state","city", "zipcode", "countrycode"
]

@lru_cache(maxsize=1)
def get_schema():
    return schema

@lru_cache(maxsize=1)
def get_columns():
    return columns

COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}

# =========================
# OpenAI API Integration
# =========================

def parse_query(nl_query):
    messages = [
        {"role": "system", "content": "You are an assistant that converts natural language queries into SQL queries for the 'contract_data' table."},
        {"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
    ]

    try:
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=messages,
            temperature=0,
            max_tokens=150,
        )
        sql_query = response.choices[0].message.content.strip()
        # Remove surrounding backticks and formatting artifacts
        if sql_query.startswith("```") and sql_query.endswith("```"):
            sql_query = sql_query[sql_query.find('\n')+1:sql_query.rfind('\n')].strip()
        return sql_query, ""
    except Exception as e:
        return "", f"Error generating SQL query: {e}"

# =========================
# Database Interaction
# =========================

def execute_sql_query(sql_query):
    try:
        con = duckdb.connect()
        con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}' WHERE awardee != '' AND state != '' AND awardee != 'null'")
        result_df = con.execute(sql_query).fetchdf()
        con.close()
        return result_df, ""
    except Exception as e:
        return None, f"Error executing query: {e}"

# =========================
# Gradio Application UI
# =========================

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    <h1 style="text-align:center;">πŸ“Š Text-to-SQL Contract Data Explorer</h1>
    <p style="text-align:center; font-size:1.2em;">Analyze US Government contract data using natural language queries.</p>
    """)
    
    with gr.Row():
        
        with gr.Column(scale=1, min_width=350):
            gr.Markdown("### πŸ’‘ Example Queries")
            with gr.Column():
                example_queries = [
                    "Show the top 10 departments by total award amount.",
                    "List contracts where the award amount exceeds $5,000,000.",
                    "Find the top 5 awardees by number of contracts.",
                    "Display contracts awarded after 2020 in New York.",
                    "What is the total award amount by state?",
                    "Find all states where the total award amount exceeds $500,000,000."
                ]
                example_buttons = []
                for i, query in enumerate(example_queries):
                    btn = gr.Button(query, variant="link", size="sm", interactive=True)
                    example_buttons.append(btn)
            
            gr.Markdown("### πŸ” Enter Your Query")
            query_input = gr.Textbox(
                label="",
                placeholder='e.g., "What are the total awards over $1M in California?"',
                lines=2
            )

            btn_generate_sql = gr.Button("πŸ“ Generate SQL Query", variant="primary")
            sql_query_out = gr.Code(label="πŸ› οΈ Generated SQL Query", language="sql")

            btn_execute_query = gr.Button("πŸš€ Execute Query", variant="secondary")
            error_out = gr.Markdown("", visible=False, elem_id="error_message")
            
            
            with gr.Accordion("πŸ“Ά Dataset Schema", open=False):
                gr.JSON(get_schema(), label="Schema")

        with gr.Column(scale=2):
            gr.Markdown("### πŸ“Ά Query Results")
            results_out = gr.DataFrame(label="", interactive=False, row_count=10)
            status_info = gr.Markdown("", visible=False, elem_id="status_info")

    # =========================
    # Event Functions
    # =========================

    def generate_sql(nl_query):
        if not nl_query.strip():
            return "", "⚠️ Please enter a natural language query."
        sql_query, error = parse_query(nl_query)
        if error:
            return "", f"❌ {error}"
        return sql_query, ""

    def execute_query(sql_query):
        if not sql_query.strip():
            return None, "⚠️ Please generate an SQL query first."
        result_df, error = execute_sql_query(sql_query)
        if error:
            return None, f"❌ {error}"
        if result_df.empty:
            return None, "ℹ️ The query returned no results."
        return result_df, ""

    def handle_example_click(example_query):
        sql_query, error = parse_query(example_query)
        if error:
            return "", f"❌ {error}", None
        result_df, exec_error = execute_sql_query(sql_query)
        if exec_error:
            return sql_query, f"❌ {exec_error}", None
        return sql_query, "", result_df

    # =========================
    # Button Click Event Handlers
    # =========================

    btn_generate_sql.click(
        fn=generate_sql,
        inputs=query_input,
        outputs=[sql_query_out, error_out]
    )

    btn_execute_query.click(
        fn=execute_query,
        inputs=sql_query_out,
        outputs=[results_out, error_out]
    )

    # Assign click events to example buttons
    for btn, query in zip(example_buttons, example_queries):
        btn.click(
            fn=lambda q=query: handle_example_click(q),
            inputs=None,
            outputs=[sql_query_out, error_out, results_out]
        )

    # Add a Gradio File output component for the download functionality
    download_csv_btn = gr.File(label="πŸ“₯ Download CSV", visible=False)
    
    # Function to save the results to a CSV and return the file path
    def save_to_csv(results_df):
        if results_df is None or results_df.empty:
            return None, "⚠️ No results to download."
        try:
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
            results_df.to_csv(temp_file.name, index=False)
            return temp_file.name, ""
        except Exception as e:
            return None, f"❌ Error generating CSV: {e}"
    
    # Add functionality to generate and show the download link for the CSV
    def generate_download(results_df):
        file_path, error = save_to_csv(results_df)
        if error:
            return None, f"❌ {error}"
        return file_path, ""
    
    # Update the Gradio event handlers
    btn_execute_query.click(
        fn=execute_query,
        inputs=sql_query_out,
        outputs=[results_out, error_out]
    )
    
    btn_execute_query.click(
        fn=generate_download,
        inputs=results_out,
        outputs=[download_csv_btn, error_out]
    )

# Launch the Gradio App
demo.queue().launch()