burningdust
Initial commit
d72c37e
import sys
sys.path.insert(1, '.')
from typing import Dict
import webdataset as wds
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
import torchvision
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
import pytorch_lightning as pl
import copy
import csv
import cv2
import random
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import json
import os, sys
import webdataset as wds
import math
from torch.utils.data.distributed import DistributedSampler
import glob
import pickle
from ldm.data.objaverse_rendered import get_rendered_objaverse_list_v0
from ldm.data.decoder import ObjaverseDataDecoder, ObjaverseDecoerWDS, nodesplitter
from loguru import logger
from torch import distributed as dist
from tqdm import tqdm
from multiprocessing.pool import ThreadPool
# Some hacky things to make experimentation easier
def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
ds = make_multi_folder_data(paths, caption_files, **kwargs)
return TransformDataset(ds)
def make_nfp_data(base_path):
dirs = list(Path(base_path).glob("*/"))
print(f"Found {len(dirs)} folders")
print(dirs)
tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
return torch.utils.data.ConcatDataset(datasets)
class VideoDataset(Dataset):
def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
self.root_dir = Path(root_dir)
self.caption_file = caption_file
self.n = n
ext = "mp4"
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.offset = offset
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
with open(self.caption_file) as f:
reader = csv.reader(f)
rows = [row for row in reader]
self.captions = dict(rows)
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
for i in range(10):
try:
return self._load_sample(index)
except Exception:
# Not really good enough but...
print("uh oh")
def _load_sample(self, index):
n = self.n
filename = self.paths[index]
min_frame = 2*self.offset + 2
vid = cv2.VideoCapture(str(filename))
max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
curr_frame_n = random.randint(min_frame, max_frames)
vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
_, curr_frame = vid.read()
prev_frames = []
for i in range(n):
prev_frame_n = curr_frame_n - (i+1)*self.offset
vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
_, prev_frame = vid.read()
prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
prev_frames.append(prev_frame)
vid.release()
caption = self.captions[filename.name]
data = {
"image": self.tform(Image.fromarray(curr_frame[...,::-1])),
"prev": torch.cat(prev_frames, dim=-1),
"txt": caption
}
return data
# end hacky things
def make_tranforms(image_transforms):
# if isinstance(image_transforms, ListConfig):
# image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms = []
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
return image_transforms
def make_multi_folder_data(paths, caption_files=None, **kwargs):
"""Make a concat dataset from multiple folders
Don't suport captions yet
If paths is a list, that's ok, if it's a Dict interpret it as:
k=folder v=n_times to repeat that
"""
list_of_paths = []
if isinstance(paths, (Dict, DictConfig)):
assert caption_files is None, \
"Caption files not yet supported for repeats"
for folder_path, repeats in paths.items():
list_of_paths.extend([folder_path]*repeats)
paths = list_of_paths
if caption_files is not None:
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
else:
datasets = [FolderData(p, **kwargs) for p in paths]
return torch.utils.data.ConcatDataset(datasets)
class NfpDataset(Dataset):
def __init__(self,
root_dir,
image_transforms=[],
ext="jpg",
default_caption="",
) -> None:
"""assume sequential frames and a deterministic transform"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.tform = make_tranforms(image_transforms)
def __len__(self):
return len(self.paths) - 1
def __getitem__(self, index):
prev = self.paths[index]
curr = self.paths[index+1]
data = {}
data["image"] = self._load_im(curr)
data["prev"] = self._load_im(prev)
data["txt"] = self.default_caption
return data
def _load_im(self, filename):
im = Image.open(filename).convert("RGB")
return self.tform(im)
class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
def __init__(self, root_dir, batch_size, train=None, validation=None,
test=None, num_workers=4, objaverse_data_list=None, ext="png",
target_name="albedo", use_wds=True, tar_config=None, **kwargs):
super().__init__(self)
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.kwargs = kwargs
self.tar_config = tar_config
self.use_wds = use_wds
if train is not None:
dataset_config = train
if validation is not None:
dataset_config = validation
image_transforms = [transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
image_transforms = torchvision.transforms.Compose(image_transforms)
self.image_transforms = {
"size": dataset_config.image_transforms.size,
"totensor": image_transforms
}
self.target_name = target_name
self.objaverse_data_list = objaverse_data_list
self.ext = ext
def naive_setup(self):
# get object data list
if self.objaverse_data_list is None or \
self.objaverse_data_list["image_list_cache_path"] == "None":
# This is too slow..
self.paths = sorted(list(Path(self.root_dir).rglob(f"*{self.target_name}*.{self.ext}")))
if len(self.paths) == 0:
# colmap format
self.paths = sorted(list(Path(self.root_dir).rglob(f"*images_train/*.*")))
else:
self.paths = get_rendered_objaverse_list_v0(self.root_dir, self.target_name, self.ext, **self.objaverse_data_list)
random.shuffle(self.paths)
# train val split
total_objects = len(self.paths)
self.paths_val = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
self.paths_train = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
if self.rank == 0:
print('============= length of dataset %d =============' % len(self.paths))
print('============= length of training dataset %d =============' % len(self.paths_train))
print('============= length of Validation dataset %d =============' % len(self.paths_val))
# Split into each GPU
self.paths_train = self._get_local_split(self.paths_train, self.world_size, self.rank)
logger.info(
f"[rank {self.rank}]: {len(self.paths_train)} images assigned."
)
def _get_tar_length(self, tar_list, img_per_obj):
dataset_size = 0
for _name in tar_list:
num_obj = int(_name.rsplit("_num_")[1].rsplit(".")[0])
dataset_size += num_obj * img_per_obj
return dataset_size
def webdataset_setup(self, list_dir, tar_dir, img_per_obj, max_tars=None):
# read data list and calculate size
tar_name_list = sorted(os.listdir(list_dir))
if not max_tars is None:
# for debugging on small scale data
tar_name_list = tar_name_list[:max_tars]
total_tars = len(tar_name_list)
# random shuffle
random.shuffle(tar_name_list)
print(f"Rank {self.rank} shuffle: {tar_name_list}")
# train test split
self.test_tars = tar_name_list[math.floor(total_tars / 100. * 99.):]
# make sure each node has one tar
if len(self.test_tars) < self.world_size:
self.test_tars += [self.test_tars[0]]*(self.world_size-len(self.test_tars))
self.train_tars = tar_name_list[:math.floor(total_tars / 100. * 99.)]
# training tar truncation
total_workers = self.num_workers * self.world_size
num_tars_train = (len(self.train_tars) // total_workers) * total_workers
if num_tars_train != len(self.train_tars):
print(f"[WARNING] Total train tars: {len(self.train_tars)}, truncated: {len(self.train_tars)-num_tars_train}, remainnig: {num_tars_train}, total workers: {total_workers}")
self.test_length = self._get_tar_length(self.test_tars, img_per_obj)
self.train_length = self._get_tar_length(self.train_tars, img_per_obj)
# name replace
test_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.test_tars]
self.test_tars = [os.path.join(tar_dir, _name) for _name in test_tars]
train_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.train_tars]
self.train_tars = [os.path.join(tar_dir, _name) for _name in train_tars]
if self.rank == 0:
print('============= length of dataset %d =============' % (self.test_length+self.train_length))
print('============= length of training dataset %d =============' % (self.train_length))
print('============= length of Validation dataset %d =============' % (self.test_length))
def setup(self, stage=None):
try:
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
except:
self.world_size = 1
self.rank = 0
if self.rank == 0:
print("#### Data ####")
if self.use_wds:
self.webdataset_setup(**self.tar_config)
else:
self.naive_setup()
def _get_local_split(self, items: list, world_size: int, rank: int, seed: int = 6):
"""The local rank only loads a split of the dataset."""
n_items = len(items)
items_permute = np.random.RandomState(seed).permutation(items)
if n_items % world_size == 0:
padded_items = items_permute
else:
padding = np.random.RandomState(seed).choice(
items, world_size - (n_items % world_size), replace=True
)
padded_items = np.concatenate([items_permute, padding])
assert (
len(padded_items) % world_size == 0
), f"len(padded_items): {len(padded_items)}; world_size: {world_size}; len(padding): {len(padding)}"
n_per_rank = len(padded_items) // world_size
local_items = padded_items[n_per_rank * rank : n_per_rank * (rank + 1)]
return local_items
def train_dataloader(self):
if self.use_wds:
loader = self.train_dataloader_wds()
else:
loader = self.train_dataloader_naive()
return loader
def val_dataloader(self):
if self.use_wds:
loader = self.val_dataloader_wds()
else:
loader = self.val_dataloader_naive()
return loader
def train_dataloader_naive(self):
dataset = ObjaverseData(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = self.paths_train, target_name=self.target_name,
**self.kwargs)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True)
def val_dataloader_naive(self):
dataset = ObjaverseData(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = self.paths_val, target_name=self.target_name,
**self.kwargs)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
def train_dataloader_wds(self):
decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = None, target_name=self.target_name,
**self.kwargs)
worker_batch = self.batch_size
epoch_length = self.train_length // worker_batch // self.num_workers // self.world_size
dataset = (wds.WebDataset(self.train_tars,
shardshuffle=min(1000, len(self.train_tars)),
nodesplitter=wds.shardlists.split_by_node)
.shuffle(5000, initial=1000)
.map(decoder.process_sample)
# .map(decoder.dict2tuple)
.batched(worker_batch, partial=False)
# .map(decoder.tuple2dict)
.map(decoder.batch_reordering)
.with_epoch(epoch_length)
.with_length(epoch_length)
)
loader = (wds.WebLoader(dataset, batch_size=None, num_workers=self.num_workers, shuffle=False)
# .unbatched()
# .shuffle(1000)
# .batched(self.batch_size)
# .map(decoder.tuple2dict)
)
print(f"# Training loader length for single worker {epoch_length} with {self.num_workers} workers")
return loader
def val_dataloader_wds(self):
decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = None, target_name=self.target_name,
**self.kwargs)
# adjust worker number, as test has much much fewer tars
val_workers = min(self.num_workers, len(self.test_tars) // self.world_size)
epoch_length = max(self.test_length // self.batch_size // val_workers // self.world_size, 1)
dataset = (wds.WebDataset(self.test_tars,
shardshuffle=min(1000, len(self.test_tars)),
handler=wds.ignore_and_continue,
nodesplitter=wds.shardlists.split_by_node)
.shuffle(1000)
.map(decoder.process_sample)
# .map(decoder.dict2tuple)
.batched(self.batch_size, partial=False)
.with_epoch(epoch_length)
.with_length(epoch_length)
)
loader = (wds.WebLoader(dataset, batch_size=None, num_workers=val_workers, shuffle=False)
.unbatched()
.shuffle(1000)
.batched(self.batch_size)
# .map(decoder.tuple2dict)
.map(decoder.batch_reordering)
)
print(f"# Validation loader length for single worker {epoch_length} with {val_workers} workers")
return loader
def test_dataloader(self):
# testing will use all given data
return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, test=True,
image_transforms=self.image_transforms,
image_list = self.paths, target_name=self.target_name,
**self.kwargs),
batch_size=32, num_workers=self.num_workers, shuffle=False,
)
class ObjaverseData(ObjaverseDataDecoder, Dataset):
def __init__(self,
root_dir='.objaverse/hf-objaverse-v1/views',
image_list=None,
threads=64,
**kargs
) -> None:
"""Create a dataset from blender rendering results.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.paths = image_list
self.root_dir = Path(root_dir)
ObjaverseDataDecoder.__init__(self, **kargs)
# pre-load data
print(f"Data pre loading start with {threads}...")
self.all_target_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
self.all_cond_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
self.all_filename = ["empty"] * len(self.paths)
if self.condition_name == "normal":
self.all_normal_img = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
self.all_crop_idx = np.zeros((len(self.paths), 6), dtype=int) + 0
print("Array allocated..")
def parallel_load(index):
pbar.update(1)
self.preload_item(index)
pbar = tqdm(total=len(self.paths))
with ThreadPool(threads) as pool:
pool.map(parallel_load, range(len(self.paths)))
pool.close()
pool.join()
print("Data pre loading done...")
def __len__(self):
return len(self.paths)
def load_mask(self, mask_filename, cond_im):
# auto image file extention
glob_files = glob.glob(mask_filename.rsplit(".", 1)[0] + ".*")
if len(glob_files) == 0:
print("Warning: no mask image find")
img_mask = np.ones_like(cond_im)
if cond_im.shape[-1] == 4:
print("Use image mask")
img_mask = img_mask * cond_im[:, :, -1:]
elif len(glob_files) == 1:
img_mask = np.array(self.normalized_read(glob_files[0]))
else:
raise NotImplementedError("Too many mask images found! {}")
return img_mask
def preload_item(self, index):
path = self.paths[index]
filename = os.path.join(path)
filename, condition_filename, \
mask_filename, normal_condition_filename, filename_targets = self.path_parsing(filename)
# get file streams
if filename_targets is None:
filename_read = filename
else:
filename_read = filename_targets
# image reading
target_im, cond_im, normal_img = self.read_images(filename_read,
condition_filename, normal_condition_filename)
# mask reading
img_mask = self.load_mask(mask_filename, cond_im)
# post processing
target_im, cond_im, normal_img, crop_idx = self.image_post_processing(img_mask, target_im, cond_im, normal_img)
if self.test:
# crop out valid_mask
self.all_crop_idx[index] = crop_idx
# put results
self.all_target_im[index] = target_im
self.all_cond_im[index] = cond_im
self.all_filename[index] = filename
if self.condition_name == "normal":
self.all_normal_img[index] = normal_img
def get_camera(self, input_filename):
camera_file = input_filename.replace(f'{self.target_name}0001', \
'camera').rsplit(".")[0] + ".pkl"
cam_dir, cam_name = camera_file.rsplit("/", 1)
cam_name = f"{cam_name:>15}"
camera_file = os.path.join(cam_dir, cam_name)
cam = pickle.load(open(camera_file, 'rb'))
return cam
def __getitem__(self, index):
target_im = self.process_im(self.all_target_im[index])
cond_img = self.process_im(self.all_cond_im[index])
filename = self.all_filename[index]
normal_img = self.process_im(self.all_normal_img[index]) \
if self.condition_name == "normal" \
else None
sample = self.parse_item(target_im, cond_img, normal_img, filename)
if self.test:
sample["crop_idx"] = self.all_crop_idx[index]
return sample
if __name__ == "__main__":
import pyhocon
class DictAsMember(dict):
def __getattr__(self, name):
value = self[name]
if isinstance(value, dict):
value = DictAsMember(value)
return value
def ConfigAsMember(config):
config_dict = DictAsMember(config)
for key in config_dict.keys():
if isinstance(config_dict[key], pyhocon.config_tree.ConfigTree):
config_dict[key] = ConfigAsMember(config_dict[key])
return config_dict
train_config = DictAsMember({
"validation": False,
"image_transforms": {"size": 256}
})
val_config = DictAsMember({
"validation": True,
"image_transforms": {"size": 256}
})
objaverse_data_list = DictAsMember({
"image_list_cache_path": "image_lists/half_400000_image_list.npz",
})
data_module = ObjaverseDataModuleFromConfig(root_dir='/mnt/volumes/perception/hujunkang/codes/renders/material-diffusion/data/objaverse_rendering',
batch_size=4, train=train_config, validation=val_config,
test=None, num_workers=1, objaverse_data_list=objaverse_data_list, ext="png",
target_name="albedo", use_wds=False, tar_config=None)
data_module.setup()
train_dataloader_naive = data_module.train_dataloader_naive()