File size: 10,470 Bytes
f4c35df
 
 
 
a5217b1
e7681d0
 
 
 
9aec085
f4c35df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aec085
f4c35df
 
 
 
 
 
 
 
9aec085
f4c35df
 
 
 
 
 
 
 
9aec085
f4c35df
 
 
e38868d
f4c35df
 
 
 
e38868d
f4c35df
 
 
 
 
 
 
 
 
 
 
 
e38868d
f4c35df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aec085
f4c35df
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import pickle
import tensorflow as tf
import pandas as pd
import numpy as np
import os
import io
import streamlit as st
import requests
from PIL import Image

# Set environment variable
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'

# Constants
MAX_LENGTH = 40
BATCH_SIZE = 32
BUFFER_SIZE = 1000
EMBEDDING_DIM = 512
UNITS = 512

# Load vocabulary
vocab = pickle.load(open('saved_vocabulary/vocab_coco.file', 'rb'))

tokenizer = tf.keras.layers.TextVectorization(
    standardize=None,
    output_sequence_length=MAX_LENGTH,
    vocabulary=vocab
)

idx2word = tf.keras.layers.StringLookup(
    mask_token="",
    vocabulary=tokenizer.get_vocabulary(),
    invert=True
)

# Model Definitions
def CNN_Encoder():
    inception_v3 = tf.keras.applications.InceptionV3(
        include_top=False,
        weights='imagenet'
    )
    output = inception_v3.output
    output = tf.keras.layers.Reshape(
        (-1, output.shape[-1]))(output)
    cnn_model = tf.keras.models.Model(inception_v3.input, output)
    return cnn_model

class TransformerEncoderLayer(tf.keras.layers.Layer):
    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.layer_norm_1 = tf.keras.layers.LayerNormalization()
        self.layer_norm_2 = tf.keras.layers.LayerNormalization()
        self.attention = tf.keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim)
        self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")

    def call(self, x, training):
        x = self.layer_norm_1(x)
        x = self.dense(x)
        attn_output = self.attention(
            query=x,
            value=x,
            key=x,
            attention_mask=None,
            training=training
        )
        x = self.layer_norm_2(x + attn_output)
        return x

class Embeddings(tf.keras.layers.Layer):
    def __init__(self, vocab_size, embed_dim, max_len):
        super().__init__()
        self.token_embeddings = tf.keras.layers.Embedding(
            vocab_size, embed_dim)
        self.position_embeddings = tf.keras.layers.Embedding(
            max_len, embed_dim, input_shape=(None, max_len))

    def call(self, input_ids):
        length = tf.shape(input_ids)[-1]
        position_ids = tf.range(start=0, limit=length, delta=1)
        position_ids = tf.expand_dims(position_ids, axis=0)
        token_embeddings = self.token_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        return token_embeddings + position_embeddings

class TransformerDecoderLayer(tf.keras.layers.Layer):
    def __init__(self, embed_dim, units, num_heads):
        super().__init__()
        self.embedding = Embeddings(
            tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)
        self.attention_1 = tf.keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.attention_2 = tf.keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.layernorm_1 = tf.keras.layers.LayerNormalization()
        self.layernorm_2 = tf.keras.layers.LayerNormalization()
        self.layernorm_3 = tf.keras.layers.LayerNormalization()
        self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
        self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)
        self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")
        self.dropout_1 = tf.keras.layers.Dropout(0.3)
        self.dropout_2 = tf.keras.layers.Dropout(0.5)

    def call(self, input_ids, encoder_output, training, mask=None):
        embeddings = self.embedding(input_ids)
        combined_mask = None
        padding_mask = None
        
        if mask is not None:
            causal_mask = self.get_causal_attention_mask(embeddings)
            padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
            combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
            combined_mask = tf.minimum(combined_mask, causal_mask)

        attn_output_1 = self.attention_1(
            query=embeddings,
            value=embeddings,
            key=embeddings,
            attention_mask=combined_mask,
            training=training
        )
        out_1 = self.layernorm_1(embeddings + attn_output_1)

        attn_output_2 = self.attention_2(
            query=out_1,
            value=encoder_output,
            key=encoder_output,
            attention_mask=padding_mask,
            training=training
        )
        out_2 = self.layernorm_2(out_1 + attn_output_2)

        ffn_out = self.ffn_layer_1(out_2)
        ffn_out = self.dropout_1(ffn_out, training=training)
        ffn_out = self.ffn_layer_2(ffn_out)

        ffn_out = self.layernorm_3(ffn_out + out_2)
        ffn_out = self.dropout_2(ffn_out, training=training)
        preds = self.out(ffn_out)
        return preds

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
            axis=0
        )
        return tf.tile(mask, mult)

class ImageCaptioningModel(tf.keras.Model):
    def __init__(self, cnn_model, encoder, decoder, image_aug=None):
        super().__init__()
        self.cnn_model = cnn_model
        self.encoder = encoder
        self.decoder = decoder
        self.image_aug = image_aug
        self.loss_tracker = tf.keras.metrics.Mean(name="loss")
        self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")

    def calculate_loss(self, y_true, y_pred, mask):
        loss = self.loss(y_true, y_pred)
        mask = tf.cast(mask, dtype=loss.dtype)
        loss *= mask
        return tf.reduce_sum(loss) / tf.reduce_sum(mask)

    def calculate_accuracy(self, y_true, y_pred, mask):
        accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
        accuracy = tf.math.logical_and(mask, accuracy)
        accuracy = tf.cast(accuracy, dtype=tf.float32)
        mask = tf.cast(mask, dtype=tf.float32)
        return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)

    def compute_loss_and_acc(self, img_embed, captions, training=True):
        encoder_output = self.encoder(img_embed, training=True)
        y_input = captions[:, :-1]
        y_true = captions[:, 1:]
        mask = (y_true != 0)
        y_pred = self.decoder(
            y_input, encoder_output, training=True, mask=mask
        )
        loss = self.calculate_loss(y_true, y_pred, mask)
        acc = self.calculate_accuracy(y_true, y_pred, mask)
        return loss, acc

    def train_step(self, batch):
        imgs, captions = batch
        if self.image_aug:
            imgs = self.image_aug(imgs)
        img_embed = self.cnn_model(imgs)
        with tf.GradientTape() as tape:
            loss, acc = self.compute_loss_and_acc(
                img_embed, captions
            )
        train_vars = (
            self.encoder.trainable_variables + self.decoder.trainable_variables
        )
        grads = tape.gradient(loss, train_vars)
        self.optimizer.apply_gradients(zip(grads, train_vars))
        self.loss_tracker.update_state(loss)
        self.acc_tracker.update_state(acc)
        return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}

    def test_step(self, batch):
        imgs, captions = batch
        img_embed = self.cnn_model(imgs)
        loss, acc = self.compute_loss_and_acc(
            img_embed, captions, training=False
        )
        self.loss_tracker.update_state(loss)
        self.acc_tracker.update_state(acc)
        return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}

    @property
    def metrics(self):
        return [self.loss_tracker, self.acc_tracker]

def load_image_from_path(img_path):
    img = tf.io.read_file(img_path)
    img = tf.io.decode_jpeg(img, channels=3)
    img = tf.keras.layers.Resizing(299, 299)(img)
    img = tf.keras.applications.inception_v3.preprocess_input(img)
    return img

def generate_caption(img, caption_model, add_noise=False):
    if isinstance(img, str):
        img = load_image_from_path(img)
    if add_noise:
        noise = tf.random.normal(img.shape) * 0.1
        img = (img + noise)
        img = (img - tf.reduce_min(img)) / (tf.reduce_max(img) - tf.reduce_min(img))
    img = tf.expand_dims(img, 0)  # Add batch dimension
    img_embed = caption_model.cnn_model(img, training=False)
    encoder_output = caption_model.encoder(img_embed, training=False)
    caption = [tokenizer.token_to_id("[START]")]
    for _ in range(MAX_LENGTH):
        input_caption = tf.convert_to_tensor([caption], dtype=tf.int32)
        pred = caption_model.decoder(input_caption, encoder_output, training=False)
        pred = tf.argmax(pred[0, -1, :]).numpy()
        caption.append(pred)
        if pred == tokenizer.token_to_id("[END]"):
            break
    return ' '.join([idx2word(word).numpy().decode('utf-8') for word in caption[1:-1]])

# Load saved model weights
cnn_model = CNN_Encoder()
encoder = TransformerEncoderLayer(embed_dim=EMBEDDING_DIM, num_heads=8)
decoder = TransformerDecoderLayer(embed_dim=EMBEDDING_DIM, units=UNITS, num_heads=8)
caption_model = ImageCaptioningModel(cnn_model=cnn_model, encoder=encoder, decoder=decoder)
caption_model.load_weights('saved_model_weights/caption_model')

# Streamlit App
st.title('Image Captioning with Transformer')
st.write('Upload an image to generate a caption.')

uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption='Uploaded Image', use_column_width=True)
    st.write("")
    st.write("Generating caption...")
    
    img_path = os.path.join("temp", uploaded_file.name)
    with open(img_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
        
    img = load_image_from_path(img_path)
    caption = generate_caption(img, caption_model)
    st.write("Caption:", caption)

# Remove temp file after captioning
if uploaded_file is not None and os.path.exists(img_path):
    os.remove(img_path)