File size: 8,039 Bytes
56a50b1
46acd56
bb6896d
46acd56
 
8fa939c
65b65aa
46acd56
bb6896d
 
65b65aa
 
46acd56
 
bb6896d
65b65aa
46acd56
 
 
 
 
a34751a
65b65aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a34751a
65b65aa
 
 
 
077c41e
65b65aa
 
 
 
 
46acd56
65b65aa
46acd56
65b65aa
 
bb6896d
65b65aa
 
bb6896d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa939c
bb6896d
 
 
 
 
 
65b65aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46acd56
65b65aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46acd56
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import streamlit as st
import cv2
import os
import numpy as np
from keras.models import load_model
from PIL import Image
import sqlite3
from datetime import datetime

# Constants
ROOT_DIR = os.getcwd()  # Root directory of the project
DATABASE = "students.db"  # SQLite database file to store student information
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]

# Load the emotion detection model
try:
    emotion_model = load_model(EMOTION_MODEL_FILE)
except Exception as e:
    st.error(f"Error loading emotion model: {e}")
    st.stop()

# Database Functions
def initialize_database():
    """ Initializes the SQLite database by creating the students table if it doesn't exist. """
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute(""" 
        CREATE TABLE IF NOT EXISTS students (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            name TEXT NOT NULL,
            roll_no TEXT NOT NULL UNIQUE,
            image_path TEXT NOT NULL,
            timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
        )
    """)
    conn.commit()
    conn.close()

def save_to_database(name, roll_no, image_path):
    """ Saves the student's data to the database. """
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    try:
        cursor.execute("""
            INSERT INTO students (name, roll_no, image_path)
            VALUES (?, ?, ?)
        """, (name, roll_no, image_path))
        conn.commit()
        st.success("Data saved successfully!")
    except sqlite3.IntegrityError:
        st.error("Roll number already exists!")
    finally:
        conn.close()

def save_image_to_root_directory(image, name, roll_no):
    """ Saves the image locally in the root directory. """
    # Construct the local file path
    filename = f"{name}_{roll_no}.jpg"
    local_path = os.path.join(ROOT_DIR, filename)
    
    try:
        # Convert image to RGB if necessary
        if image.mode != "RGB":
            image = image.convert("RGB")
        
        # Save the image to the root directory
        image.save(local_path)
        st.success(f"Image saved to {local_path}.")
    except Exception as e:
        st.error(f"Error saving image: {e}")
    
    return local_path

# Initialize the database when the app starts
initialize_database()

# Streamlit user interface (UI)
st.title("Student Registration with Image Upload and Face Recognition")

# Input fields for student details
name = st.text_input("Enter your name")
roll_no = st.text_input("Enter your roll number")

# Choose input method for the image (webcam or file upload)
capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])

# Handle webcam capture or file upload
if capture_mode == "Use Webcam":
    picture = st.camera_input("Take a picture")  # Capture image using webcam
elif capture_mode == "Upload File":
    picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])  # Upload image from file system

# Save data and process image on button click
if st.button("Register"):
    if not name or not roll_no:
        st.error("Please fill in both name and roll number.")
    elif not picture:
        st.error("Please upload or capture an image.")
    else:
        try:
            # Open the image based on capture mode
            if capture_mode == "Use Webcam" and picture:
                image = Image.open(picture)
            elif capture_mode == "Upload File" and picture:
                image = Image.open(picture)
            
            # Save the image locally in the root directory
            image_path = save_image_to_root_directory(image, name, roll_no)
            save_to_database(name, roll_no, image_path)
        except Exception as e:
            st.error(f"An error occurred: {e}")

# Face and Emotion Detection Function
def detect_faces_and_emotions(image):
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
    
    for (x, y, w, h) in faces:
        face = gray_image[y:y+h, x:x+w]
        resized_face = cv2.resize(face, (48, 48))  # Resize face to 48x48
        rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_GRAY2RGB)
        normalized_face = rgb_face / 255.0
        reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
        
        # Predict the emotion
        emotion_prediction = emotion_model.predict(reshaped_face)
        emotion_label = np.argmax(emotion_prediction)
        return EMOTION_LABELS[emotion_label]
    return None

# Face Recognition: Compare uploaded image with all images in the root directory
def recognize_face(image_path):
    """ Compares the uploaded image with all images in the root directory """
    img = cv2.imread(image_path)
    gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
    
    recognized_name = None
    for (x, y, w, h) in faces:
        face = gray_image[y:y+h, x:x+w]
        for filename in os.listdir(ROOT_DIR):
            if filename.endswith(('.jpg', '.jpeg', '.png')):
                stored_image = cv2.imread(os.path.join(ROOT_DIR, filename))
                stored_gray = cv2.cvtColor(stored_image, cv2.COLOR_BGR2GRAY)
                stored_faces = face_cascade.detectMultiScale(stored_gray)
                for (sx, sy, sw, sh) in stored_faces:
                    stored_face = stored_gray[sy:sy+sh, sx:sx+sw]
                    resized_stored_face = cv2.resize(stored_face, (48, 48))
                    rgb_stored_face = cv2.cvtColor(resized_stored_face, cv2.COLOR_GRAY2RGB)
                    stored_normalized_face = rgb_stored_face / 255.0
                    stored_reshaped_face = np.reshape(stored_normalized_face, (1, 48, 48, 3))

                    # Compare the faces (you can use a more advanced method like facial embeddings, but for simplicity, this is just basic comparison)
                    if np.allclose(stored_reshaped_face, face):
                        recognized_name = filename.split('_')[0]  # Extract the name from the file name
                        break
    return recognized_name

# UI for Emotion and Face Detection
if st.sidebar.selectbox("Menu", ["Register Student", "Face Recognition and Emotion Detection"]) == "Face Recognition and Emotion Detection":
    st.subheader("Recognize Faces and Detect Emotions")
    action = st.radio("Choose Action", ["Upload Image", "Use Webcam"])

    if action == "Upload Image":
        uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
        if uploaded_file:
            img = Image.open(uploaded_file)
            img_array = np.array(img)
            emotion_label = detect_faces_and_emotions(img_array)
            recognized_name = recognize_face(uploaded_file)
            if emotion_label:
                st.success(f"Emotion Detected: {emotion_label}")
            if recognized_name:
                st.success(f"Face Recognized: {recognized_name}")
            else:
                st.warning("No face detected.")

    elif action == "Use Webcam":
        st.info("Use the camera input widget to capture an image.")
        camera_image = st.camera_input("Take a picture")
        if camera_image:
            img = Image.open(camera_image)
            img_array = np.array(img)
            emotion_label = detect_faces_and_emotions(img_array)
            recognized_name = recognize_face(camera_image)
            if emotion_label:
                st.success(f"Emotion Detected: {emotion_label}")
            if recognized_name:
                st.success(f"Face Recognized: {recognized_name}")
            else:
                st.warning("No face detected.")