File size: 8,056 Bytes
bb6896d 316712f 8fa939c 65b65aa 316712f 013ce47 bb6896d 707a2ef 316712f 46acd56 bb6896d 316712f 65b65aa 46acd56 013ce47 810670b 013ce47 46acd56 a34751a 65b65aa 316712f 65b65aa 707a2ef 65b65aa 707a2ef 65b65aa 707a2ef 65b65aa 707a2ef 65b65aa 316712f 65b65aa 316712f a34751a 65b65aa 077c41e 316712f 65b65aa 316712f 707a2ef 65b65aa 316712f 46acd56 707a2ef 46acd56 65b65aa bb6896d 65b65aa 316712f bb6896d 8fa939c bb6896d 316712f 707a2ef 65b65aa 316712f 707a2ef 316712f 707a2ef 316712f 707a2ef 316712f 65b65aa 316712f 65b65aa 46acd56 65b65aa 46acd56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import streamlit as st
from huggingface_hub import HfApi
from PIL import Image
import sqlite3
import cv2
import numpy as np
from tensorflow.keras.models import load_model # Importing load_model
from datetime import datetime # Importing datetime
# Constants
HOME_DIR = os.getcwd() # Home directory (root directory)
DATABASE = "students.db" # SQLite database to store student information
REPO_NAME = "face-and-emotion-detection"
REPO_ID = f"LovnishVerma/{REPO_NAME}" # Hugging Face Repo
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5" # Emotion detection model file
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
# Retrieve Hugging Face token from environment variable
hf_token = os.getenv("upload")
if not hf_token:
st.error("Hugging Face token not found. Please set the environment variable.")
st.stop()
# Initialize Hugging Face API
api = HfApi()
try:
api.create_repo(repo_id=REPO_ID, repo_type="space", space_sdk="streamlit", token=hf_token, exist_ok=True)
st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
except Exception as e:
st.error(f"Error creating Hugging Face repository: {e}")
# Load the emotion detection model
try:
# Check if model file exists
if not os.path.exists(EMOTION_MODEL_FILE):
st.error(f"Error: Emotion model file '{EMOTION_MODEL_FILE}' not found!")
st.stop()
# Load the model
emotion_model = load_model(EMOTION_MODEL_FILE) # Load the emotion model
st.success("Emotion detection model loaded successfully!")
except Exception as e:
st.error(f"Error loading emotion model: {e}")
st.stop()
# Database Functions
def initialize_database():
""" Initializes the SQLite database by creating the students table if it doesn't exist. """
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS students (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
roll_no TEXT NOT NULL UNIQUE,
image_url TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
conn.close()
def save_to_database(name, roll_no, image_url):
""" Saves the student's data to the database. """
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
try:
cursor.execute("""
INSERT INTO students (name, roll_no, image_url)
VALUES (?, ?, ?)
""", (name, roll_no, image_url))
conn.commit()
st.success("Data saved successfully!")
except sqlite3.IntegrityError:
st.error("Roll number already exists!")
finally:
conn.close()
def save_image_to_hugging_face(image, name, roll_no):
""" Saves the image locally to the HOME_DIR and uploads it to Hugging Face. """
# Construct the local file path
filename = f"{name}_{roll_no}_{datetime.now().strftime('%Y%m%d%H%M%S')}.jpg"
local_path = os.path.join(HOME_DIR, filename)
try:
# Convert image to RGB if necessary
if image.mode != "RGB":
image = image.convert("RGB")
# Save the image to the home directory
image.save(local_path)
# Upload the saved file to Hugging Face
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=filename,
repo_id=REPO_ID,
repo_type="space",
token=hf_token,
)
# Construct the image URL for Hugging Face
image_url = f"https://{REPO_NAME}.hf.space/media/{filename}"
st.success(f"Image saved to Hugging Face as {filename}. URL: {image_url}")
except Exception as e:
st.error(f"Error saving or uploading image: {e}")
return image_url
# Initialize the database when the app starts
initialize_database()
# Streamlit user interface (UI)
st.title("Student Registration with Hugging Face Image Upload")
# Input fields for student details
name = st.text_input("Enter your name")
roll_no = st.text_input("Enter your roll number")
# Choose input method for the image (webcam or file upload)
capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])
# Handle webcam capture or file upload
if capture_mode == "Use Webcam":
picture = st.camera_input("Take a picture") # Capture image using webcam
elif capture_mode == "Upload File":
picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # Upload image from file system
# Save data and process image on button click
if st.button("Register"):
if not name or not roll_no:
st.error("Please fill in both name and roll number.")
elif not picture:
st.error("Please upload or capture an image.")
else:
try:
# Open the image based on capture mode
if capture_mode == "Use Webcam" and picture:
image = Image.open(picture)
elif capture_mode == "Upload File" and picture:
image = Image.open(picture)
# Save the image locally and upload it to Hugging Face
image_url = save_image_to_hugging_face(image, name, roll_no)
save_to_database(name, roll_no, image_url)
except Exception as e:
st.error(f"An error occurred: {e}")
# Display registered student data
if st.checkbox("Show registered students"):
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("SELECT name, roll_no, image_url, timestamp FROM students")
rows = cursor.fetchall()
conn.close()
st.write("### Registered Students")
for row in rows:
name, roll_no, image_url, timestamp = row
st.write(f"**Name:** {name}, **Roll No:** {roll_no}, **Timestamp:** {timestamp}")
st.image(image_url, caption=f"{name} ({roll_no})", use_column_width=True)
# Face and Emotion Detection Function
def detect_faces_and_emotions(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
for (x, y, w, h) in faces:
face = gray_image[y:y+h, x:x+w]
resized_face = cv2.resize(face, (48, 48)) # Resize face to 48x48
rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_GRAY2RGB)
normalized_face = rgb_face / 255.0
reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
# Predict the emotion
emotion_prediction = emotion_model.predict(reshaped_face)
emotion_label = np.argmax(emotion_prediction)
return EMOTION_LABELS[emotion_label]
return None
# UI for Emotion Detection
if st.sidebar.selectbox("Menu", ["Register Student", "Face Recognition and Emotion Detection", "View Attendance"]) == "Face Recognition and Emotion Detection":
st.subheader("Recognize Faces and Detect Emotions")
action = st.radio("Choose Action", ["Upload Image", "Use Webcam"])
if action == "Upload Image":
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
if uploaded_file:
img = Image.open(uploaded_file)
img_array = np.array(img)
emotion_label = detect_faces_and_emotions(img_array)
if emotion_label:
st.success(f"Emotion Detected: {emotion_label}")
else:
st.warning("No face detected.")
elif action == "Use Webcam":
st.info("Use the camera input widget to capture an image.")
camera_image = st.camera_input("Take a picture")
if camera_image:
img = Image.open(camera_image)
img_array = np.array(img)
emotion_label = detect_faces_and_emotions(img_array)
if emotion_label:
st.success(f"Emotion Detected: {emotion_label}")
else:
st.warning("No face detected.")
|