File size: 8,056 Bytes
bb6896d
316712f
 
8fa939c
65b65aa
316712f
 
013ce47
 
bb6896d
 
707a2ef
316712f
 
 
 
46acd56
bb6896d
316712f
 
 
 
 
 
 
 
 
 
 
 
 
 
65b65aa
46acd56
013ce47
 
 
 
 
 
810670b
013ce47
46acd56
 
 
a34751a
65b65aa
 
 
 
 
316712f
65b65aa
 
 
 
707a2ef
65b65aa
 
 
 
 
 
707a2ef
65b65aa
 
 
 
 
707a2ef
65b65aa
707a2ef
65b65aa
 
 
 
 
 
 
316712f
 
65b65aa
316712f
 
a34751a
65b65aa
 
 
 
077c41e
316712f
65b65aa
316712f
 
 
 
 
 
 
 
 
707a2ef
 
 
 
 
65b65aa
316712f
46acd56
707a2ef
46acd56
65b65aa
 
bb6896d
65b65aa
316712f
bb6896d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa939c
bb6896d
 
 
 
 
 
316712f
707a2ef
 
65b65aa
 
 
316712f
 
 
 
707a2ef
316712f
 
 
 
 
707a2ef
316712f
707a2ef
316712f
65b65aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316712f
 
65b65aa
 
 
 
 
 
 
 
 
 
46acd56
65b65aa
 
 
 
 
 
 
 
 
 
 
 
46acd56
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import streamlit as st
from huggingface_hub import HfApi
from PIL import Image
import sqlite3
import cv2
import numpy as np
from tensorflow.keras.models import load_model  # Importing load_model
from datetime import datetime  # Importing datetime

# Constants
HOME_DIR = os.getcwd()  # Home directory (root directory)
DATABASE = "students.db"  # SQLite database to store student information
REPO_NAME = "face-and-emotion-detection"
REPO_ID = f"LovnishVerma/{REPO_NAME}"  # Hugging Face Repo
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"  # Emotion detection model file
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]

# Retrieve Hugging Face token from environment variable
hf_token = os.getenv("upload")
if not hf_token:
    st.error("Hugging Face token not found. Please set the environment variable.")
    st.stop()

# Initialize Hugging Face API
api = HfApi()
try:
    api.create_repo(repo_id=REPO_ID, repo_type="space", space_sdk="streamlit", token=hf_token, exist_ok=True)
    st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
except Exception as e:
    st.error(f"Error creating Hugging Face repository: {e}")

# Load the emotion detection model
try:
    # Check if model file exists
    if not os.path.exists(EMOTION_MODEL_FILE):
        st.error(f"Error: Emotion model file '{EMOTION_MODEL_FILE}' not found!")
        st.stop()

    # Load the model
    emotion_model = load_model(EMOTION_MODEL_FILE)  # Load the emotion model
    st.success("Emotion detection model loaded successfully!")
except Exception as e:
    st.error(f"Error loading emotion model: {e}")
    st.stop()

# Database Functions
def initialize_database():
    """ Initializes the SQLite database by creating the students table if it doesn't exist. """
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute("""
        CREATE TABLE IF NOT EXISTS students (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            name TEXT NOT NULL,
            roll_no TEXT NOT NULL UNIQUE,
            image_url TEXT NOT NULL,
            timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
        )
    """)
    conn.commit()
    conn.close()

def save_to_database(name, roll_no, image_url):
    """ Saves the student's data to the database. """
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    try:
        cursor.execute("""
            INSERT INTO students (name, roll_no, image_url)
            VALUES (?, ?, ?)
        """, (name, roll_no, image_url))
        conn.commit()
        st.success("Data saved successfully!")
    except sqlite3.IntegrityError:
        st.error("Roll number already exists!")
    finally:
        conn.close()

def save_image_to_hugging_face(image, name, roll_no):
    """ Saves the image locally to the HOME_DIR and uploads it to Hugging Face. """
    # Construct the local file path
    filename = f"{name}_{roll_no}_{datetime.now().strftime('%Y%m%d%H%M%S')}.jpg"
    local_path = os.path.join(HOME_DIR, filename)
    
    try:
        # Convert image to RGB if necessary
        if image.mode != "RGB":
            image = image.convert("RGB")
        
        # Save the image to the home directory
        image.save(local_path)
        
        # Upload the saved file to Hugging Face
        api.upload_file(
            path_or_fileobj=local_path,
            path_in_repo=filename,
            repo_id=REPO_ID,
            repo_type="space",
            token=hf_token,
        )

        # Construct the image URL for Hugging Face
        image_url = f"https://{REPO_NAME}.hf.space/media/{filename}"
        st.success(f"Image saved to Hugging Face as {filename}. URL: {image_url}")

    except Exception as e:
        st.error(f"Error saving or uploading image: {e}")
    
    return image_url

# Initialize the database when the app starts
initialize_database()

# Streamlit user interface (UI)
st.title("Student Registration with Hugging Face Image Upload")

# Input fields for student details
name = st.text_input("Enter your name")
roll_no = st.text_input("Enter your roll number")

# Choose input method for the image (webcam or file upload)
capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])

# Handle webcam capture or file upload
if capture_mode == "Use Webcam":
    picture = st.camera_input("Take a picture")  # Capture image using webcam
elif capture_mode == "Upload File":
    picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])  # Upload image from file system

# Save data and process image on button click
if st.button("Register"):
    if not name or not roll_no:
        st.error("Please fill in both name and roll number.")
    elif not picture:
        st.error("Please upload or capture an image.")
    else:
        try:
            # Open the image based on capture mode
            if capture_mode == "Use Webcam" and picture:
                image = Image.open(picture)
            elif capture_mode == "Upload File" and picture:
                image = Image.open(picture)
            
            # Save the image locally and upload it to Hugging Face
            image_url = save_image_to_hugging_face(image, name, roll_no)
            save_to_database(name, roll_no, image_url)
        except Exception as e:
            st.error(f"An error occurred: {e}")

# Display registered student data
if st.checkbox("Show registered students"):
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute("SELECT name, roll_no, image_url, timestamp FROM students")
    rows = cursor.fetchall()
    conn.close()
    
    st.write("### Registered Students")
    for row in rows:
        name, roll_no, image_url, timestamp = row
        st.write(f"**Name:** {name}, **Roll No:** {roll_no}, **Timestamp:** {timestamp}")
        st.image(image_url, caption=f"{name} ({roll_no})", use_column_width=True)

# Face and Emotion Detection Function
def detect_faces_and_emotions(image):
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
    
    for (x, y, w, h) in faces:
        face = gray_image[y:y+h, x:x+w]
        resized_face = cv2.resize(face, (48, 48))  # Resize face to 48x48
        rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_GRAY2RGB)
        normalized_face = rgb_face / 255.0
        reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
        
        # Predict the emotion
        emotion_prediction = emotion_model.predict(reshaped_face)
        emotion_label = np.argmax(emotion_prediction)
        return EMOTION_LABELS[emotion_label]
    return None

# UI for Emotion Detection
if st.sidebar.selectbox("Menu", ["Register Student", "Face Recognition and Emotion Detection", "View Attendance"]) == "Face Recognition and Emotion Detection":
    st.subheader("Recognize Faces and Detect Emotions")
    action = st.radio("Choose Action", ["Upload Image", "Use Webcam"])

    if action == "Upload Image":
        uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
        if uploaded_file:
            img = Image.open(uploaded_file)
            img_array = np.array(img)
            emotion_label = detect_faces_and_emotions(img_array)
            if emotion_label:
                st.success(f"Emotion Detected: {emotion_label}")
            else:
                st.warning("No face detected.")

    elif action == "Use Webcam":
        st.info("Use the camera input widget to capture an image.")
        camera_image = st.camera_input("Take a picture")
        if camera_image:
            img = Image.open(camera_image)
            img_array = np.array(img)
            emotion_label = detect_faces_and_emotions(img_array)
            if emotion_label:
                st.success(f"Emotion Detected: {emotion_label}")
            else:
                st.warning("No face detected.")