Spaces:
Paused
Paused
import os | |
from huggingface_hub import login | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import gradio as gr | |
import torch | |
# Autenticar usando el token almacenado como secreto | |
hf_token = os.getenv("HF_API_TOKEN") | |
login(hf_token) | |
# Cargar el modelo y el tokenizador | |
model_name = "mrm8488/t5-base-finetuned-spanish" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
def generate_text(input_text): | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512) | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=200, num_beams=4, early_stopping=True) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
# Crear la interfaz con Gradio | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Generador de Texto en Español", | |
description="Genera texto en español utilizando un modelo de lenguaje preentrenado." | |
) | |
iface.launch() | |