Spaces:
Runtime error
Runtime error
File size: 2,995 Bytes
5558e45 da2c9bd 14637b5 da2c9bd a204dfd da2c9bd 14637b5 da2c9bd a204dfd da2c9bd beba0cd 4df79e9 da2c9bd a204dfd fd0291a a204dfd fd0291a da2c9bd 3c9ea56 ab2e1ab 7ac57fe 14637b5 fc0ac32 14637b5 2e51b08 8448570 7ac57fe a204dfd fc0ac32 3c9ea56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
import pandas as pd
import numpy as np
from langdetect import detect
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error
data = pd.read_csv("modeled_data.csv")
analyzer = SentimentIntensityAnalyzer()
def sample_model(df, regressor, scale=None):
X = df.drop("rate",axis=1)
y = df["rate"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1)
scaled_X_train, scaled_X_test = X_train, X_test
if scale != None:
scaler = scale
scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns)
scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns)
model = regressor
model.fit(scaled_X_train, y_train)
y_pred = model.predict(scaled_X_test)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
return model, scaled_X_train, scaled_X_test, y_train, y_test
def user_interaction(comment, model):
negative_score = analyzer.polarity_scores(comment)["neg"]
neutral_score = analyzer.polarity_scores(comment)["neu"]
positive_score = analyzer.polarity_scores(comment)["pos"]
compound_score = analyzer.polarity_scores(comment)["compound"]
rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]])
return round(negative_score,2), round(neutral_score,2), round(positive_score,2), round(compound_score,2), round(rate_pred[0],2)
def take_input(comment):
cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))
return user_interaction(comment, cons_tuned_svr)
with gr.Blocks() as demo:
gr.Markdown("# AIN311 Project P05 - MOOC Recommendation")
gr.Markdown("## Generating a Rating from User Comment")
with gr.Column():
gr.Markdown("""
##### Thanks for your interest and taking your time.
##### Tell us about your personal experience enrolling in this course. Was it the right match for you?
""")
input_comment = gr.Textbox(placeholder="Write your comment here...", show_label = False)
button = gr.Button("What is the Rating I Have Given? Click me to Learn")
with gr.Row():
gr.Markdown("#### Generated Rating from Your Comment")
rating = gr.Number()
with gr.Column():
gr.Markdown("#### Sentiment Scores of Your Comment")
negscore = gr.Number(label="Negativity Score")
neuscore = gr.Number(label="Neutrality Score")
posscore = gr.Number(label="Positivity Score")
compscore = gr.Number(label="Compound Score")
button.click(fn=take_input, inputs=input_comment, outputs=[negscore, neuscore, posscore, compscore, rating])
demo.launch() |