Spaces:
Runtime error
Runtime error
File size: 11,535 Bytes
760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import plotly.graph_objs as go
import math
import numpy as np
from data_fetcher import fetch_crypto_data, fetch_stock_data, fetch_sentiment_data # Import the data fetcher module
from src.model import train_model, predict_growth # Import your model functions
# --- Replace with your Alpha Vantage API key ---
ALPHA_VANTAGE_API_KEY = "YOUR_ALPHA_VANTAGE_API_KEY" # <--- Replace with your key
# --- Constants ---
CRYPTO_SYMBOLS = ["BTCUSDT", "ETHUSDT"]
STOCK_SYMBOLS = ["AAPL", "MSFT"]
INTERVAL_OPTIONS = ["1h", "60min"] # Consistent naming
# --- Technical Analysis Functions ---
def calculate_technical_indicators(df):
"""Calculates RSI, MACD, and Bollinger Bands."""
if df.empty:
return df
# RSI Calculation
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# MACD Calculation
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
# Bollinger Bands Calculation
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
def create_technical_charts(df):
"""Creates technical analysis charts (Price, RSI, MACD)."""
if df.empty:
return None, None, None
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
# --- Prophet Forecasting Functions ---
def prepare_data_for_prophet(df):
"""Prepares data for Prophet."""
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
"""Performs Prophet forecasting."""
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
"""Wrapper for Prophet forecasting."""
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
periods=forecast_steps,
freq=freq,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
def create_forecast_plot(forecast_df):
"""Creates the forecast plot."""
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
)
return fig
# --- Main Prediction and Display Function ---
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
"""Main function to orchestrate data fetching, analysis, and prediction."""
df = pd.DataFrame()
error_message = ""
# 1. Data Fetching
if market_type == "Crypto":
try:
df = fetch_crypto_data(symbol)
except Exception as e:
error_message = f"Error fetching crypto data: {e}"
elif market_type == "Stock":
try:
df = fetch_stock_data(symbol)
except Exception as e:
error_message = f"Error fetching stock data: {e}"
else:
error_message = "Invalid market type selected."
if df.empty:
return None, None, None, None, None, "", error_message # Correctly pass the error message
# 2. Preprocessing & Technical Analysis
df["timestamp"] = pd.to_datetime(df["timestamp"]) # No unit arg as it's handled in fetcher
numeric_cols = ["open", "high", "low", "close", "volume"]
df[numeric_cols] = df[numeric_cols].astype(float)
df = calculate_technical_indicators(df)
# 3. Prophet Forecasting
df_prophet = prepare_data_for_prophet(df)
freq = "h" if interval == "1h" or interval == "60min" else "d" #dynamic freq
forecast_df, prophet_error = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if prophet_error:
error_message = f"Prophet Error: {prophet_error}"
return None, None, None, None, None, "", error_message #Return error
forecast_plot = create_forecast_plot(forecast_df)
# 4. Create the Charts
tech_plot, rsi_plot, macd_plot = create_technical_charts(df)
# 5. Model Training and Prediction (simplified)
try:
train_model(df.copy()) # Train on a copy to avoid modifying original df.
if not df.empty: #Check if dataframe is empty or not.
latest_data = df[["close", "volume"]].iloc[-1].values # Get the last row for prediction.
growth_prediction = predict_growth(latest_data)
growth_label = "Yes" if growth_prediction[0] == 1 else "No"
else:
growth_label = "N/A: Insufficient Data" # If there is no data to predict the growth.
except Exception as e:
error_message = f"Model Error: {e}"
growth_label = "N/A"
# Prepare forecast data for the Dataframe output
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message #Return error
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown("# Market Analysis and Prediction")
with gr.Row():
with gr.Column():
market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto")
symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTCUSDT") # Start with Crypto
interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h")
forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=24, step=1)
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value="additive")
changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=0.05)
with gr.Column():
forecast_plot = gr.Plot(label="Price Forecast")
with gr.Row():
tech_plot = gr.Plot(label="Technical Analysis")
rsi_plot = gr.Plot(label="RSI Indicator")
with gr.Row():
macd_plot = gr.Plot(label="MACD")
forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"])
growth_label_output = gr.Label(label="Explosive Growth Prediction") # Added for prediction.
# Event Listener to update symbol dropdown based on market type
def update_symbol_choices(market_type):
if market_type == "Crypto":
return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTCUSDT")
elif market_type == "Stock":
return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL") # Default to AAPL for stock
return gr.Dropdown(choices=[], value=None) # Shouldn't happen, but safety check
market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd])
analyze_button = gr.Button("Analyze Market", variant="primary")
analyze_button.click(
fn=analyze_market,
inputs=[
market_type_dd,
symbol_dd,
interval_dd,
forecast_steps_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
],
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output]
)
if __name__ == "__main__":
demo.launch() |