ExplosiveGrowth / App.py
MacDash's picture
Create App.py
bb8fd69 verified
raw
history blame
3.98 kB
import requests
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from textblob import TextBlob
import tweepy
import time
class ExplosiveGrowthBot:
def __init__(self):
self.api_key = "YOUR_BINANCE_API_KEY"
self.base_url = "https://api.binance.com"
self.model = RandomForestClassifier()
self.data = pd.DataFrame()
self.twitter_api = self.setup_twitter_api()
def setup_twitter_api(self):
"""Set up Twitter API for sentiment analysis."""
consumer_key = "YOUR_TWITTER_CONSUMER_KEY"
consumer_secret = "YOUR_TWITTER_CONSUMER_SECRET"
access_token = "YOUR_TWITTER_ACCESS_TOKEN"
access_token_secret = "YOUR_TWITTER_ACCESS_SECRET"
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
return tweepy.API(auth)
def fetch_market_data(self, symbol="BTCUSDT", interval="1h", limit=100):
"""Fetch historical market data from Binance."""
url = f"{self.base_url}/api/v3/klines"
params = {"symbol": symbol, "interval": interval, "limit": limit}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
df = pd.DataFrame(data, columns=["timestamp", "open", "high", "low", "close", "volume", "_", "_", "_", "_", "_"])
df["close"] = df["close"].astype(float)
df["volume"] = df["volume"].astype(float)
return df
else:
print("Error fetching market data:", response.text)
return None
def analyze_sentiment(self, keyword):
"""Analyze sentiment from Twitter."""
tweets = self.twitter_api.search_tweets(q=keyword, count=100, lang="en")
sentiments = []
for tweet in tweets:
analysis = TextBlob(tweet.text)
sentiments.append(analysis.sentiment.polarity)
return np.mean(sentiments)
def train_model(self, df):
"""Train the AI model to predict explosive growth."""
df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Label: 1 if price increased by >5%
features = df[["close", "volume"]].dropna()
target = df["target"].dropna()
self.model.fit(features[:-1], target)
def predict_growth(self, latest_data):
"""Predict whether the asset will experience explosive growth."""
prediction = self.model.predict([latest_data])
return prediction[0]
def execute_trade(self, symbol, action):
"""Simulate trade execution."""
print(f"Executing {action} trade for {symbol}...")
def run(self):
"""Main loop for the bot."""
symbols_to_watch = ["BTCUSDT", "ETHUSDT", "DOGEUSDT"]
while True:
for symbol in symbols_to_watch:
# Fetch market data
df = self.fetch_market_data(symbol=symbol)
if df is not None:
# Analyze sentiment
sentiment_score = self.analyze_sentiment(symbol.replace("USDT", ""))
print(f"Sentiment score for {symbol}: {sentiment_score}")
# Train model and make predictions
self.train_model(df)
latest_data = df.iloc[-1][["close", "volume"]].values
prediction = self.predict_growth(latest_data)
# Decision-making based on prediction and sentiment
if prediction == 1 and sentiment_score > 0.5: # Strong buy signal
self.execute_trade(symbol, "BUY")
elif prediction == 0 and sentiment_score < -0.5: # Strong sell signal
self.execute_trade(symbol, "SELL")
time.sleep(300) # Wait 5 minutes before checking again
if __name__ == "__main__":
bot = ExplosiveGrowthBot()
bot.run()