Spaces:
Runtime error
Runtime error
import requests | |
import pandas as pd | |
import numpy as np | |
from sklearn.ensemble import RandomForestClassifier | |
from textblob import TextBlob | |
import tweepy | |
import time | |
class ExplosiveGrowthBot: | |
def __init__(self): | |
self.api_key = "YOUR_BINANCE_API_KEY" | |
self.base_url = "https://api.binance.com" | |
self.model = RandomForestClassifier() | |
self.data = pd.DataFrame() | |
self.twitter_api = self.setup_twitter_api() | |
def setup_twitter_api(self): | |
"""Set up Twitter API for sentiment analysis.""" | |
consumer_key = "YOUR_TWITTER_CONSUMER_KEY" | |
consumer_secret = "YOUR_TWITTER_CONSUMER_SECRET" | |
access_token = "YOUR_TWITTER_ACCESS_TOKEN" | |
access_token_secret = "YOUR_TWITTER_ACCESS_SECRET" | |
auth = tweepy.OAuthHandler(consumer_key, consumer_secret) | |
auth.set_access_token(access_token, access_token_secret) | |
return tweepy.API(auth) | |
def fetch_market_data(self, symbol="BTCUSDT", interval="1h", limit=100): | |
"""Fetch historical market data from Binance.""" | |
url = f"{self.base_url}/api/v3/klines" | |
params = {"symbol": symbol, "interval": interval, "limit": limit} | |
response = requests.get(url, params=params) | |
if response.status_code == 200: | |
data = response.json() | |
df = pd.DataFrame(data, columns=["timestamp", "open", "high", "low", "close", "volume", "_", "_", "_", "_", "_"]) | |
df["close"] = df["close"].astype(float) | |
df["volume"] = df["volume"].astype(float) | |
return df | |
else: | |
print("Error fetching market data:", response.text) | |
return None | |
def analyze_sentiment(self, keyword): | |
"""Analyze sentiment from Twitter.""" | |
tweets = self.twitter_api.search_tweets(q=keyword, count=100, lang="en") | |
sentiments = [] | |
for tweet in tweets: | |
analysis = TextBlob(tweet.text) | |
sentiments.append(analysis.sentiment.polarity) | |
return np.mean(sentiments) | |
def train_model(self, df): | |
"""Train the AI model to predict explosive growth.""" | |
df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Label: 1 if price increased by >5% | |
features = df[["close", "volume"]].dropna() | |
target = df["target"].dropna() | |
self.model.fit(features[:-1], target) | |
def predict_growth(self, latest_data): | |
"""Predict whether the asset will experience explosive growth.""" | |
prediction = self.model.predict([latest_data]) | |
return prediction[0] | |
def execute_trade(self, symbol, action): | |
"""Simulate trade execution.""" | |
print(f"Executing {action} trade for {symbol}...") | |
def run(self): | |
"""Main loop for the bot.""" | |
symbols_to_watch = ["BTCUSDT", "ETHUSDT", "DOGEUSDT"] | |
while True: | |
for symbol in symbols_to_watch: | |
# Fetch market data | |
df = self.fetch_market_data(symbol=symbol) | |
if df is not None: | |
# Analyze sentiment | |
sentiment_score = self.analyze_sentiment(symbol.replace("USDT", "")) | |
print(f"Sentiment score for {symbol}: {sentiment_score}") | |
# Train model and make predictions | |
self.train_model(df) | |
latest_data = df.iloc[-1][["close", "volume"]].values | |
prediction = self.predict_growth(latest_data) | |
# Decision-making based on prediction and sentiment | |
if prediction == 1 and sentiment_score > 0.5: # Strong buy signal | |
self.execute_trade(symbol, "BUY") | |
elif prediction == 0 and sentiment_score < -0.5: # Strong sell signal | |
self.execute_trade(symbol, "SELL") | |
time.sleep(300) # Wait 5 minutes before checking again | |
if __name__ == "__main__": | |
bot = ExplosiveGrowthBot() | |
bot.run() | |