ExplosiveGrowth / app.py
MacDash's picture
Update app.py
c63df78 verified
raw
history blame
13.1 kB
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import plotly.graph_objs as go
import math
import numpy as np
# Constants for API endpoints
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H",
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W",
}
# Function to calculate technical indicators
def calculate_technical_indicators(df):
# RSI Calculation
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# MACD Calculation
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
# Bollinger Bands Calculation
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
# Function to create technical analysis charts
def create_technical_charts(df):
# Price and Bollinger Bands Chart
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
# RSI Chart
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
# MACD Chart
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
# Fetch available symbols from OKX API
def fetch_okx_symbols():
try:
resp = requests.get(OKX_TICKERS_ENDPOINT)
data = resp.json().get("data", [])
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"]
except Exception as e:
print(f"Error fetching symbols: {e}")
return ["BTC-USDT"]
# Fetch historical candle data from OKX API
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
calls_needed = math.ceil(total / 300)
all_data = []
for _ in range(calls_needed):
params = {"instId": symbol, "bar": timeframe, "limit": 300}
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params)
resp.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
data = resp.json().get("data", [])
except requests.exceptions.RequestException as e:
print(f"Error fetching candles: {e}")
return pd.DataFrame()
except (ValueError, KeyError) as e:
print(f"Error parsing candle data: {e}")
return pd.DataFrame()
if not data:
break
columns = ["ts", "o", "h", "l", "c"]
df_chunk = pd.DataFrame(data, columns=columns)
df_chunk.rename(columns={"ts": "timestamp", "o": "open",
"h": "high", "l": "low",
"c": "close"}, inplace=True)
all_data.append(df_chunk)
if len(data) < 300:
break
if not all_data:
return pd.DataFrame()
df_all = pd.concat(all_data)
# Convert timestamps to datetime and calculate indicators
df_all["timestamp"] = pd.to_datetime(df_all["timestamp"], unit="ms")
numeric_cols = ["open", "high", "low", "close"]
df_all[numeric_cols] = df_all[numeric_cols].astype(float)
df_all = calculate_technical_indicators(df_all)
return df_all
# Prepare data for Prophet forecasting
def prepare_data_for_prophet(df):
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
# Perform forecasting using Prophet
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
return pd.DataFrame(), f"Forecast error: {e}"
# Wrapper function for forecasting
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
periods=forecast_steps,
freq=freq,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
# Create forecast plot
def create_forecast_plot(forecast_df):
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
)
return fig
# Function to display forecast and technical analysis charts
def display_forecast(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
df_raw, forecast_df, error = predict(
symbol=symbol,
timeframe=timeframe,
forecast_steps=forecast_steps,
total_candles=total_candles,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale
)
if error:
return None, None, None, None, pd.DataFrame() # Return empty dataframe for forecast_df
forecast_plot = create_forecast_plot(forecast_df)
tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
# Prepare forecast data for the Dataframe output
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display
# Main prediction function
def predict(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
df_raw = fetch_okx_candles(symbol=symbol, timeframe=okx_bar, total=total_candles)
if df_raw.empty:
return pd.DataFrame(), pd.DataFrame(), "No data fetched."
df_prophet = prepare_data_for_prophet(df_raw)
freq = "h" if "h" in timeframe.lower() else "d"
future_df, err2 = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if err2:
return pd.DataFrame(), pd.DataFrame(), err2
return df_raw, future_df, ""
# Main Gradio app setup
def main():
symbols = fetch_okx_symbols()
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Header
with gr.Row():
gr.Markdown("# CryptoVision")
# Market Selection and Forecast Parameters
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Market Selection")
symbol_dd = gr.Dropdown(
label="Trading Pair",
choices=symbols,
value="BTC-USDT"
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=list(TIMEFRAME_MAPPING.keys()),
value="1h"
)
with gr.Column(scale=1):
gr.Markdown("### Forecast Parameters")
forecast_steps_slider = gr.Slider(
label="Forecast Steps",
minimum=1,
maximum=100,
value=24,
step=1
)
total_candles_slider = gr.Slider(
label="Historical Candles",
minimum=300,
maximum=3000,
value=2000,
step=100
)
# Advanced Settings
with gr.Row():
with gr.Column():
gr.Markdown("### Advanced Settings")
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
seasonality_mode_dd = gr.Dropdown(
label="Seasonality Mode",
choices=["additive", "multiplicative"],
value="additive"
)
changepoint_scale_slider = gr.Slider(
label="Changepoint Prior Scale",
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05
)
# Generate Forecast Button
forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")
# Output Plots
with gr.Row():
forecast_plot = gr.Plot(label="Price Forecast")
with gr.Row():
tech_plot = gr.Plot(label="Technical Analysis")
rsi_plot = gr.Plot(label="RSI Indicator")
with gr.Row():
macd_plot = gr.Plot(label="MACD")
# Output Data Table
forecast_df = gr.Dataframe(
label="Forecast Data",
headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
)
# Button click functionality
forecast_btn.click(
fn=display_forecast,
inputs=[
symbol_dd,
timeframe_dd,
forecast_steps_slider,
total_candles_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
],
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
)
return demo
if __name__ == "__main__":
app = main()
app.launch()