File size: 51,360 Bytes
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
 
 
a4ca225
35f9333
 
a4ca225
 
 
 
35f9333
a4ca225
 
35f9333
a4ca225
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
a4ca225
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
35f9333
 
 
a4ca225
 
35f9333
a4ca225
 
 
 
35f9333
a4ca225
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
35f9333
 
 
 
a4ca225
35f9333
 
 
 
 
a4ca225
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
 
 
 
 
 
 
a4ca225
35f9333
a4ca225
 
35f9333
a4ca225
 
 
35f9333
 
 
a4ca225
 
 
 
35f9333
 
a4ca225
 
35f9333
a4ca225
 
35f9333
a4ca225
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
35f9333
 
a4ca225
35f9333
 
 
 
 
 
 
a4ca225
35f9333
a4ca225
 
35f9333
a4ca225
35f9333
 
a4ca225
35f9333
 
 
 
 
 
 
a4ca225
35f9333
 
 
 
 
 
a4ca225
35f9333
 
a4ca225
35f9333
 
a4ca225
35f9333
 
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
 
 
 
a4ca225
 
 
 
 
 
 
 
 
 
 
35f9333
 
 
a4ca225
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
35f9333
 
a4ca225
 
 
 
35f9333
a4ca225
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
35f9333
a4ca225
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
35f9333
a4ca225
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
35f9333
a4ca225
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
35f9333
a4ca225
 
 
 
 
 
 
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
35f9333
a4ca225
 
 
 
35f9333
 
a4ca225
35f9333
a4ca225
35f9333
a4ca225
 
 
35f9333
 
a4ca225
35f9333
a4ca225
 
35f9333
a4ca225
 
 
 
 
35f9333
 
a4ca225
35f9333
a4ca225
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
a4ca225
 
 
 
35f9333
 
 
a4ca225
 
 
 
35f9333
 
 
a4ca225
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
a4ca225
 
35f9333
a4ca225
 
35f9333
a4ca225
 
35f9333
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f9333
 
 
a4ca225
 
 
35f9333
 
a4ca225
 
 
 
 
35f9333
 
 
 
 
 
a4ca225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
"""
AI Dataset Studio - Modern Web Scraping & Dataset Creation Platform
A mini Scale AI for non-coders and vibe coders

Features:
- Intelligent web scraping with content extraction
- Automated data cleaning and preprocessing
- Interactive annotation tools
- Template-based workflows for common ML tasks
- High-quality dataset generation
- Export to HuggingFace Hub and popular ML formats
- Visual data quality metrics
- No-code dataset creation workflows
"""

import gradio as gr
import pandas as pd
import numpy as np
import json
import re
import requests
from bs4 import BeautifulSoup
from urllib.parse import urlparse, urljoin
from datetime import datetime, timedelta
import logging
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass, asdict
from pathlib import Path
import uuid
import hashlib
import time
from collections import defaultdict
import io
import zipfile

# Optional imports with fallbacks
try:
    from transformers import pipeline, AutoTokenizer, AutoModel
    from sentence_transformers import SentenceTransformer
    HAS_TRANSFORMERS = True
except ImportError:
    HAS_TRANSFORMERS = False

try:
    import nltk
    from nltk.tokenize import sent_tokenize, word_tokenize
    from nltk.corpus import stopwords
    HAS_NLTK = True
except ImportError:
    HAS_NLTK = False

try:
    from datasets import Dataset, DatasetDict
    HAS_DATASETS = True
except ImportError:
    HAS_DATASETS = False

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Download NLTK data if available
if HAS_NLTK:
    try:
        nltk.download('punkt', quiet=True)
        nltk.download('stopwords', quiet=True)
        nltk.download('averaged_perceptron_tagger', quiet=True)
    except:
        pass

@dataclass
class ScrapedItem:
    """Data class for scraped content"""
    id: str
    url: str
    title: str
    content: str
    metadata: Dict[str, Any]
    scraped_at: str
    word_count: int
    language: str = "en"
    quality_score: float = 0.0
    labels: List[str] = None
    annotations: Dict[str, Any] = None

    def __post_init__(self):
        if self.labels is None:
            self.labels = []
        if self.annotations is None:
            self.annotations = {}

@dataclass
class DatasetTemplate:
    """Template for dataset creation"""
    name: str
    description: str
    task_type: str  # classification, ner, qa, summarization, etc.
    required_fields: List[str]
    optional_fields: List[str]
    example_format: Dict[str, Any]
    instructions: str

class WebScraperEngine:
    """Advanced web scraping engine with smart content extraction"""
    
    def __init__(self):
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (compatible; AI-DatasetStudio/1.0; Research)',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Language': 'en-US,en;q=0.5',
            'Accept-Encoding': 'gzip, deflate',
            'Connection': 'keep-alive',
        })
        
        # Initialize AI models if available
        self.content_classifier = None
        self.quality_scorer = None
        self._load_models()
    
    def _load_models(self):
        """Load AI models for content analysis"""
        if not HAS_TRANSFORMERS:
            logger.warning("⚠️ Transformers not available, using rule-based methods")
            return
        
        try:
            # Content quality assessment
            self.quality_scorer = pipeline(
                "text-classification",
                model="martin-ha/toxic-comment-model",
                return_all_scores=True
            )
            logger.info("✅ Quality assessment model loaded")
        except Exception as e:
            logger.warning(f"⚠️ Could not load quality model: {e}")
    
    def scrape_url(self, url: str) -> Optional[ScrapedItem]:
        """Scrape a single URL and return structured data"""
        try:
            # Validate URL
            if not self._is_valid_url(url):
                raise ValueError("Invalid URL provided")
            
            # Fetch content
            response = self.session.get(url, timeout=15)
            response.raise_for_status()
            
            # Parse HTML
            soup = BeautifulSoup(response.content, 'html.parser')
            
            # Extract structured data
            title = self._extract_title(soup)
            content = self._extract_content(soup)
            metadata = self._extract_metadata(soup, response)
            
            # Create scraped item
            item = ScrapedItem(
                id=str(uuid.uuid4()),
                url=url,
                title=title,
                content=content,
                metadata=metadata,
                scraped_at=datetime.now().isoformat(),
                word_count=len(content.split()),
                quality_score=self._assess_quality(content)
            )
            
            return item
            
        except Exception as e:
            logger.error(f"Failed to scrape {url}: {e}")
            return None
    
    def batch_scrape(self, urls: List[str], progress_callback=None) -> List[ScrapedItem]:
        """Scrape multiple URLs with progress tracking"""
        results = []
        total = len(urls)
        
        for i, url in enumerate(urls):
            if progress_callback:
                progress_callback(i / total, f"Scraping {i+1}/{total}: {url[:50]}...")
            
            item = self.scrape_url(url)
            if item:
                results.append(item)
            
            # Rate limiting
            time.sleep(1)
        
        return results
    
    def _is_valid_url(self, url: str) -> bool:
        """Validate URL format and safety"""
        try:
            parsed = urlparse(url)
            return parsed.scheme in ['http', 'https'] and parsed.netloc
        except:
            return False
    
    def _extract_title(self, soup: BeautifulSoup) -> str:
        """Extract page title"""
        # Try multiple selectors
        selectors = [
            'meta[property="og:title"]',
            'meta[name="twitter:title"]',
            'title',
            'h1'
        ]
        
        for selector in selectors:
            element = soup.select_one(selector)
            if element:
                if element.name == 'meta':
                    return element.get('content', '').strip()
                else:
                    return element.get_text().strip()
        
        return "Untitled"
    
    def _extract_content(self, soup: BeautifulSoup) -> str:
        """Extract main content using multiple strategies"""
        # Remove unwanted elements
        for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside']):
            element.decompose()
        
        # Try content-specific selectors
        content_selectors = [
            'article',
            'main',
            '.content',
            '.post-content',
            '.entry-content',
            '.article-body',
            '[role="main"]'
        ]
        
        for selector in content_selectors:
            element = soup.select_one(selector)
            if element:
                text = element.get_text(separator=' ', strip=True)
                if len(text) > 200:
                    return self._clean_text(text)
        
        # Fallback to body
        body = soup.find('body')
        if body:
            return self._clean_text(body.get_text(separator=' ', strip=True))
        
        return self._clean_text(soup.get_text(separator=' ', strip=True))
    
    def _extract_metadata(self, soup: BeautifulSoup, response) -> Dict[str, Any]:
        """Extract metadata from page"""
        metadata = {
            'domain': urlparse(response.url).netloc,
            'status_code': response.status_code,
            'content_type': response.headers.get('content-type', ''),
            'extracted_at': datetime.now().isoformat()
        }
        
        # Extract meta tags
        meta_tags = ['description', 'keywords', 'author', 'published_time']
        for tag in meta_tags:
            element = soup.find('meta', attrs={'name': tag}) or soup.find('meta', attrs={'property': f'article:{tag}'})
            if element:
                metadata[tag] = element.get('content', '')
        
        return metadata
    
    def _clean_text(self, text: str) -> str:
        """Clean extracted text"""
        # Remove extra whitespace
        text = re.sub(r'\s+', ' ', text)
        
        # Remove common patterns
        patterns = [
            r'Subscribe.*?newsletter',
            r'Click here.*?more',
            r'Advertisement',
            r'Share this.*?social',
            r'Follow us on.*?media'
        ]
        
        for pattern in patterns:
            text = re.sub(pattern, '', text, flags=re.IGNORECASE)
        
        return text.strip()
    
    def _assess_quality(self, content: str) -> float:
        """Assess content quality (0-1 score)"""
        if not content:
            return 0.0
        
        score = 0.0
        
        # Length check
        word_count = len(content.split())
        if word_count >= 50:
            score += 0.3
        elif word_count >= 20:
            score += 0.1
        
        # Structure check (sentences)
        sentence_count = len(re.split(r'[.!?]+', content))
        if sentence_count >= 3:
            score += 0.2
        
        # Language quality (basic)
        if re.search(r'[A-Z][a-z]+', content):  # Proper capitalization
            score += 0.2
        
        if not re.search(r'[^\w\s]', content[:100]):  # No weird characters at start
            score += 0.1
        
        # Readability (simple check)
        avg_word_length = np.mean([len(word) for word in content.split()])
        if 3 <= avg_word_length <= 8:
            score += 0.2
        
        return min(score, 1.0)

class DataProcessor:
    """Advanced data processing and cleaning pipeline"""
    
    def __init__(self):
        self.language_detector = None
        self.sentiment_analyzer = None
        self.ner_model = None
        self._load_models()
    
    def _load_models(self):
        """Load NLP models for processing"""
        if not HAS_TRANSFORMERS:
            return
        
        try:
            # Sentiment analysis
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="cardiffnlp/twitter-roberta-base-sentiment-latest"
            )
            
            # Named Entity Recognition
            self.ner_model = pipeline(
                "ner",
                model="dbmdz/bert-large-cased-finetuned-conll03-english",
                aggregation_strategy="simple"
            )
            
            logger.info("✅ NLP models loaded successfully")
        except Exception as e:
            logger.warning(f"⚠️ Could not load NLP models: {e}")
    
    def process_items(self, items: List[ScrapedItem], processing_options: Dict[str, bool]) -> List[ScrapedItem]:
        """Process scraped items with various enhancement options"""
        processed_items = []
        
        for item in items:
            processed_item = self._process_single_item(item, processing_options)
            if processed_item:
                processed_items.append(processed_item)
        
        return processed_items
    
    def _process_single_item(self, item: ScrapedItem, options: Dict[str, bool]) -> Optional[ScrapedItem]:
        """Process a single item"""
        try:
            # Clean content
            if options.get('clean_text', True):
                item.content = self._clean_text_advanced(item.content)
            
            # Filter by quality
            if options.get('quality_filter', True) and item.quality_score < 0.3:
                return None
            
            # Add sentiment analysis
            if options.get('add_sentiment', False) and self.sentiment_analyzer:
                sentiment = self._analyze_sentiment(item.content)
                item.metadata['sentiment'] = sentiment
            
            # Add named entities
            if options.get('extract_entities', False) and self.ner_model:
                entities = self._extract_entities(item.content)
                item.metadata['entities'] = entities
            
            # Add language detection
            if options.get('detect_language', True):
                item.language = self._detect_language(item.content)
            
            return item
            
        except Exception as e:
            logger.error(f"Error processing item {item.id}: {e}")
            return None
    
    def _clean_text_advanced(self, text: str) -> str:
        """Advanced text cleaning"""
        # Remove URLs
        text = re.sub(r'http\S+|www\.\S+', '', text)
        
        # Remove email addresses
        text = re.sub(r'\S+@\S+', '', text)
        
        # Remove excessive punctuation
        text = re.sub(r'[!?]{2,}', '!', text)
        text = re.sub(r'\.{3,}', '...', text)
        
        # Normalize whitespace
        text = re.sub(r'\s+', ' ', text)
        
        # Remove very short paragraphs (likely navigation)
        paragraphs = text.split('\n')
        paragraphs = [p.strip() for p in paragraphs if len(p.strip()) > 20]
        
        return '\n'.join(paragraphs).strip()
    
    def _analyze_sentiment(self, text: str) -> Dict[str, Any]:
        """Analyze sentiment of text"""
        try:
            # Truncate text for model limits
            text_sample = text[:512]
            result = self.sentiment_analyzer(text_sample)[0]
            return {
                'label': result['label'],
                'score': result['score']
            }
        except:
            return {'label': 'UNKNOWN', 'score': 0.0}
    
    def _extract_entities(self, text: str) -> List[Dict[str, Any]]:
        """Extract named entities"""
        try:
            # Truncate text for model limits
            text_sample = text[:512]
            entities = self.ner_model(text_sample)
            return [
                {
                    'text': ent['word'],
                    'label': ent['entity_group'],
                    'confidence': ent['score']
                }
                for ent in entities
            ]
        except:
            return []
    
    def _detect_language(self, text: str) -> str:
        """Simple language detection"""
        # Basic heuristic - could be enhanced with proper language detection
        if re.search(r'[а-яё]', text.lower()):
            return 'ru'
        elif re.search(r'[ñáéíóúü]', text.lower()):
            return 'es'
        elif re.search(r'[àâäçéèêëïîôöùûüÿ]', text.lower()):
            return 'fr'
        else:
            return 'en'

class AnnotationEngine:
    """Interactive annotation tools for dataset creation"""
    
    def __init__(self):
        self.templates = self._load_templates()
    
    def _load_templates(self) -> Dict[str, DatasetTemplate]:
        """Load predefined dataset templates"""
        templates = {
            'text_classification': DatasetTemplate(
                name="Text Classification",
                description="Classify text into predefined categories",
                task_type="classification",
                required_fields=["text", "label"],
                optional_fields=["confidence", "metadata"],
                example_format={"text": "Sample text", "label": "positive"},
                instructions="Label each text with the appropriate category"
            ),
            'sentiment_analysis': DatasetTemplate(
                name="Sentiment Analysis",
                description="Analyze emotional tone of text",
                task_type="classification",
                required_fields=["text", "sentiment"],
                optional_fields=["confidence", "aspects"],
                example_format={"text": "I love this!", "sentiment": "positive"},
                instructions="Classify the sentiment as positive, negative, or neutral"
            ),
            'named_entity_recognition': DatasetTemplate(
                name="Named Entity Recognition",
                description="Identify and classify named entities in text",
                task_type="ner",
                required_fields=["text", "entities"],
                optional_fields=["metadata"],
                example_format={
                    "text": "John works at OpenAI in San Francisco",
                    "entities": [
                        {"text": "John", "label": "PERSON", "start": 0, "end": 4},
                        {"text": "OpenAI", "label": "ORG", "start": 14, "end": 20}
                    ]
                },
                instructions="Mark all named entities (people, organizations, locations, etc.)"
            ),
            'question_answering': DatasetTemplate(
                name="Question Answering",
                description="Create question-answer pairs from text",
                task_type="qa",
                required_fields=["context", "question", "answer"],
                optional_fields=["answer_start", "metadata"],
                example_format={
                    "context": "The capital of France is Paris.",
                    "question": "What is the capital of France?",
                    "answer": "Paris"
                },
                instructions="Create meaningful questions and provide accurate answers"
            ),
            'summarization': DatasetTemplate(
                name="Text Summarization",
                description="Create concise summaries of longer texts",
                task_type="summarization",
                required_fields=["text", "summary"],
                optional_fields=["summary_type", "length"],
                example_format={
                    "text": "Long article text...",
                    "summary": "Brief summary of the main points"
                },
                instructions="Write clear, concise summaries capturing key information"
            )
        }
        return templates
    
    def create_annotation_interface(self, template_name: str, items: List[ScrapedItem]) -> Dict[str, Any]:
        """Create annotation interface for specific template"""
        template = self.templates.get(template_name)
        if not template:
            raise ValueError(f"Unknown template: {template_name}")
        
        # Prepare data for annotation
        annotation_data = []
        for item in items:
            annotation_data.append({
                'id': item.id,
                'text': item.content[:1000],  # Truncate for UI
                'title': item.title,
                'url': item.url,
                'annotations': {}
            })
        
        return {
            'template': template,
            'data': annotation_data,
            'progress': 0,
            'completed': 0
        }

class DatasetExporter:
    """Export datasets in various formats for ML frameworks"""
    
    def __init__(self):
        self.supported_formats = [
            'huggingface_datasets',
            'json',
            'csv',
            'parquet',
            'jsonl',
            'pytorch',
            'tensorflow'
        ]
    
    def export_dataset(self, items: List[ScrapedItem], template: DatasetTemplate, 
                      export_format: str, annotations: Dict[str, Any] = None) -> str:
        """Export annotated dataset in specified format"""
        try:
            # Prepare dataset
            dataset_data = self._prepare_dataset_data(items, template, annotations)
            
            # Export based on format
            if export_format == 'huggingface_datasets':
                return self._export_huggingface(dataset_data, template)
            elif export_format == 'json':
                return self._export_json(dataset_data)
            elif export_format == 'csv':
                return self._export_csv(dataset_data)
            elif export_format == 'jsonl':
                return self._export_jsonl(dataset_data)
            else:
                raise ValueError(f"Unsupported format: {export_format}")
                
        except Exception as e:
            logger.error(f"Export failed: {e}")
            raise
    
    def _prepare_dataset_data(self, items: List[ScrapedItem], template: DatasetTemplate, 
                            annotations: Dict[str, Any] = None) -> List[Dict[str, Any]]:
        """Prepare data according to template format"""
        dataset_data = []
        
        for item in items:
            # Base data from scraped item
            data_point = {
                'text': item.content,
                'title': item.title,
                'url': item.url,
                'metadata': item.metadata
            }
            
            # Add annotations if available
            if annotations and item.id in annotations:
                item_annotations = annotations[item.id]
                data_point.update(item_annotations)
            
            # Format according to template
            formatted_point = self._format_for_template(data_point, template)
            if formatted_point:
                dataset_data.append(formatted_point)
        
        return dataset_data
    
    def _format_for_template(self, data_point: Dict[str, Any], template: DatasetTemplate) -> Dict[str, Any]:
        """Format data point according to template requirements"""
        formatted = {}
        
        # Ensure required fields are present
        for field in template.required_fields:
            if field in data_point:
                formatted[field] = data_point[field]
            elif field == 'text' and 'content' in data_point:
                formatted[field] = data_point['content']
            else:
                # Skip this data point if required field is missing
                return None
        
        # Add optional fields if present
        for field in template.optional_fields:
            if field in data_point:
                formatted[field] = data_point[field]
        
        return formatted
    
    def _export_huggingface(self, dataset_data: List[Dict[str, Any]], template: DatasetTemplate) -> str:
        """Export as HuggingFace Dataset"""
        if not HAS_DATASETS:
            raise ImportError("datasets library not available")
        
        try:
            # Create dataset
            dataset = Dataset.from_list(dataset_data)
            
            # Create dataset card
            card_content = f"""
# {template.name} Dataset

## Description
{template.description}

## Task Type
{template.task_type}

## Format
{template.example_format}

## Instructions
{template.instructions}

## Statistics
- Total samples: {len(dataset_data)}
- Created: {datetime.now().isoformat()}

## Usage
```python
from datasets import load_dataset
dataset = load_dataset('path/to/dataset')
```
"""
            
            # Save dataset
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            dataset_name = f"{template.name.lower().replace(' ', '_')}_{timestamp}"
            
            # Save locally (would push to Hub in production)
            dataset.save_to_disk(dataset_name)
            
            # Create info file
            with open(f"{dataset_name}/README.md", "w") as f:
                f.write(card_content)
            
            return dataset_name
            
        except Exception as e:
            logger.error(f"HuggingFace export failed: {e}")
            raise
    
    def _export_json(self, dataset_data: List[Dict[str, Any]]) -> str:
        """Export as JSON file"""
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"dataset_{timestamp}.json"
        
        with open(filename, 'w', encoding='utf-8') as f:
            json.dump(dataset_data, f, indent=2, ensure_ascii=False)
        
        return filename
    
    def _export_csv(self, dataset_data: List[Dict[str, Any]]) -> str:
        """Export as CSV file"""
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"dataset_{timestamp}.csv"
        
        df = pd.DataFrame(dataset_data)
        df.to_csv(filename, index=False)
        
        return filename
    
    def _export_jsonl(self, dataset_data: List[Dict[str, Any]]) -> str:
        """Export as JSONL file"""
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"dataset_{timestamp}.jsonl"
        
        with open(filename, 'w', encoding='utf-8') as f:
            for item in dataset_data:
                f.write(json.dumps(item, ensure_ascii=False) + '\n')
        
        return filename

def create_modern_interface():
    """Create modern, intuitive interface for AI Dataset Studio"""
    
    # Initialize the studio
    studio = DatasetStudio()
    
    # Custom CSS for modern appearance
    custom_css = """
    .gradio-container {
        max-width: 1400px;
        margin: auto;
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    
    .studio-header {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 2rem;
        border-radius: 15px;
        margin-bottom: 2rem;
        text-align: center;
        box-shadow: 0 8px 32px rgba(0,0,0,0.1);
    }
    
    .workflow-card {
        background: #f8f9ff;
        border: 2px solid #e1e5ff;
        border-radius: 12px;
        padding: 1.5rem;
        margin: 1rem 0;
        transition: all 0.3s ease;
    }
    
    .workflow-card:hover {
        border-color: #667eea;
        box-shadow: 0 4px 20px rgba(102, 126, 234, 0.1);
    }
    
    .step-header {
        display: flex;
        align-items: center;
        margin-bottom: 1rem;
        font-size: 1.2em;
        font-weight: 600;
        color: #4c51bf;
    }
    
    .step-number {
        background: #667eea;
        color: white;
        border-radius: 50%;
        width: 30px;
        height: 30px;
        display: flex;
        align-items: center;
        justify-content: center;
        margin-right: 1rem;
        font-weight: bold;
    }
    
    .feature-grid {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
        gap: 1rem;
        margin: 1rem 0;
    }
    
    .feature-item {
        background: white;
        border: 1px solid #e2e8f0;
        border-radius: 8px;
        padding: 1rem;
        text-align: center;
    }
    
    .stat-card {
        background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
        color: white;
        padding: 1rem;
        border-radius: 10px;
        text-align: center;
        margin: 0.5rem;
    }
    
    .progress-bar {
        background: #e2e8f0;
        border-radius: 10px;
        height: 8px;
        overflow: hidden;
    }
    
    .progress-fill {
        background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
        height: 100%;
        transition: width 0.3s ease;
    }
    
    .template-card {
        border: 2px solid #e2e8f0;
        border-radius: 10px;
        padding: 1rem;
        margin: 0.5rem;
        cursor: pointer;
        transition: all 0.3s ease;
    }
    
    .template-card:hover {
        border-color: #667eea;
        transform: translateY(-2px);
        box-shadow: 0 4px 12px rgba(0,0,0,0.1);
    }
    
    .template-selected {
        border-color: #667eea;
        background: #f7fafc;
    }
    
    .export-option {
        background: #f7fafc;
        border: 1px solid #e2e8f0;
        border-radius: 8px;
        padding: 1rem;
        margin: 0.5rem 0;
        cursor: pointer;
    }
    
    .export-option:hover {
        background: #edf2f7;
        border-color: #cbd5e0;
    }
    
    .success-message {
        background: #f0fff4;
        border: 1px solid #9ae6b4;
        color: #276749;
        padding: 1rem;
        border-radius: 8px;
        margin: 1rem 0;
    }
    
    .error-message {
        background: #fed7d7;
        border: 1px solid #feb2b2;
        color: #c53030;
        padding: 1rem;
        border-radius: 8px;
        margin: 1rem 0;
    }
    """
    
    # Project state for UI
    project_state = gr.State({})
    
    with gr.Blocks(css=custom_css, title="AI Dataset Studio", theme=gr.themes.Soft()) as interface:
        
        # Header
        gr.HTML("""
        <div class="studio-header">
            <h1>🚀 AI Dataset Studio</h1>
            <p>Create high-quality training datasets without coding - Your personal Scale AI</p>
            <p style="opacity: 0.9; font-size: 0.9em;">Web Scraping → Data Processing → Annotation → ML-Ready Datasets</p>
        </div>
        """)
        
        # Main workflow tabs
        with gr.Tabs() as main_tabs:
            
            # Tab 1: Project Setup
            with gr.Tab("🎯 Project Setup", id="setup"):
                gr.HTML('<div class="step-header"><div class="step-number">1</div>Start Your Dataset Project</div>')
                
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>📋 Project Configuration</h3>
                            <p>Define your dataset project and choose the type of AI task you're building for.</p>
                        </div>
                        """)
                        
                        project_name = gr.Textbox(
                            label="Project Name",
                            placeholder="e.g., 'News Sentiment Analysis' or 'Product Review Classification'",
                            value="My Dataset Project"
                        )
                        
                        # Template selection with visual cards
                        gr.HTML("<h4>🎨 Choose Your Dataset Template</h4>")
                        
                        template_choice = gr.Radio(
                            choices=[
                                ("📊 Text Classification", "text_classification"),
                                ("😊 Sentiment Analysis", "sentiment_analysis"), 
                                ("👥 Named Entity Recognition", "named_entity_recognition"),
                                ("❓ Question Answering", "question_answering"),
                                ("📝 Text Summarization", "summarization")
                            ],
                            label="Dataset Type",
                            value="text_classification",
                            interactive=True
                        )
                        
                        create_project_btn = gr.Button(
                            "🚀 Create Project", 
                            variant="primary", 
                            size="lg"
                        )
                        
                        project_status = gr.Markdown("")
                    
                    with gr.Column(scale=1):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>💡 Template Guide</h3>
                            <div class="feature-grid">
                                <div class="feature-item">
                                    <h4>📊 Text Classification</h4>
                                    <p>Categorize text into predefined labels</p>
                                    <small>Great for: Spam detection, topic classification</small>
                                </div>
                                <div class="feature-item">
                                    <h4>😊 Sentiment Analysis</h4>
                                    <p>Analyze emotional tone and opinions</p>
                                    <small>Great for: Review analysis, social media monitoring</small>
                                </div>
                                <div class="feature-item">
                                    <h4>👥 Named Entity Recognition</h4>
                                    <p>Identify people, places, organizations</p>
                                    <small>Great for: Information extraction, content tagging</small>
                                </div>
                            </div>
                        </div>
                        """)
            
            # Tab 2: Data Collection
            with gr.Tab("🕷️ Data Collection", id="collection"):
                gr.HTML('<div class="step-header"><div class="step-number">2</div>Collect Your Data</div>')
                
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>🌐 Web Scraping</h3>
                            <p>Provide URLs to scrape content automatically. Our AI will extract clean, structured text.</p>
                        </div>
                        """)
                        
                        # URL input methods
                        with gr.Tabs():
                            with gr.Tab("📝 Manual Input"):
                                urls_input = gr.Textbox(
                                    label="URLs to Scrape",
                                    placeholder="https://example.com/article1\nhttps://example.com/article2\n...",
                                    lines=8,
                                    info="Enter one URL per line"
                                )
                            
                            with gr.Tab("📎 File Upload"):
                                urls_file = gr.File(
                                    label="Upload URL List",
                                    file_types=[".txt", ".csv"],
                                    info="Upload a text file with URLs (one per line) or CSV with 'url' column"
                                )
                        
                        scrape_btn = gr.Button("🚀 Start Scraping", variant="primary", size="lg")
                        
                        # Progress tracking
                        scraping_progress = gr.Progress()
                        scraping_status = gr.Markdown("")
                        
                    with gr.Column(scale=1):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>⚡ Features</h3>
                            <ul style="list-style: none; padding: 0;">
                                <li>✅ Smart content extraction</li>
                                <li>✅ Quality scoring</li>
                                <li>✅ Duplicate detection</li>
                                <li>✅ Security validation</li>
                                <li>✅ Metadata extraction</li>
                                <li>✅ Rate limiting</li>
                            </ul>
                        </div>
                        """)
                        
                        # Quick stats
                        collection_stats = gr.HTML("")
            
            # Tab 3: Data Processing
            with gr.Tab("⚙️ Data Processing", id="processing"):
                gr.HTML('<div class="step-header"><div class="step-number">3</div>Clean & Enhance Your Data</div>')
                
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>🔧 Processing Options</h3>
                            <p>Configure how to clean and enhance your scraped data with AI-powered analysis.</p>
                        </div>
                        """)
                        
                        # Processing options
                        with gr.Row():
                            with gr.Column():
                                clean_text = gr.Checkbox(label="🧹 Advanced Text Cleaning", value=True)
                                quality_filter = gr.Checkbox(label="🎯 Quality Filtering", value=True)
                                detect_language = gr.Checkbox(label="🌍 Language Detection", value=True)
                            
                            with gr.Column():
                                add_sentiment = gr.Checkbox(label="😊 Sentiment Analysis", value=False)
                                extract_entities = gr.Checkbox(label="👥 Entity Extraction", value=False)
                                deduplicate = gr.Checkbox(label="🔄 Remove Duplicates", value=True)
                        
                        process_btn = gr.Button("⚙️ Process Data", variant="primary", size="lg")
                        processing_status = gr.Markdown("")
                        
                    with gr.Column(scale=1):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>📊 Processing Stats</h3>
                            <div id="processing-stats"></div>
                        </div>
                        """)
                        
                        processing_stats = gr.HTML("")
            
            # Tab 4: Data Preview
            with gr.Tab("👀 Data Preview", id="preview"):
                gr.HTML('<div class="step-header"><div class="step-number">4</div>Review Your Dataset</div>')
                
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>📋 Dataset Preview</h3>
                            <p>Review your processed data before annotation or export.</p>
                        </div>
                        """)
                        
                        refresh_preview_btn = gr.Button("🔄 Refresh Preview", variant="secondary")
                        
                        # Data preview table
                        data_preview = gr.DataFrame(
                            headers=["Title", "Content Preview", "Word Count", "Quality Score", "URL"],
                            label="Dataset Preview",
                            interactive=False
                        )
                        
                    with gr.Column(scale=1):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>📈 Dataset Statistics</h3>
                        </div>
                        """)
                        
                        dataset_stats = gr.JSON(label="Statistics")
            
            # Tab 5: Export
            with gr.Tab("📤 Export Dataset", id="export"):
                gr.HTML('<div class="step-header"><div class="step-number">5</div>Export Your Dataset</div>')
                
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>💾 Export Options</h3>
                            <p>Export your dataset in various formats for different ML frameworks and platforms.</p>
                        </div>
                        """)
                        
                        # Export format selection
                        export_format = gr.Radio(
                            choices=[
                                ("🤗 HuggingFace Datasets", "huggingface_datasets"),
                                ("📄 JSON", "json"),
                                ("📊 CSV", "csv"),
                                ("📋 JSONL", "jsonl"),
                                ("⚡ Parquet", "parquet")
                            ],
                            label="Export Format",
                            value="json"
                        )
                        
                        # Template for export
                        export_template = gr.Dropdown(
                            choices=[
                                "text_classification",
                                "sentiment_analysis", 
                                "named_entity_recognition",
                                "question_answering",
                                "summarization"
                            ],
                            label="Dataset Template",
                            value="text_classification"
                        )
                        
                        export_btn = gr.Button("📤 Export Dataset", variant="primary", size="lg")
                        
                        # Export results
                        export_status = gr.Markdown("")
                        export_file = gr.File(label="Download Dataset", visible=False)
                        
                    with gr.Column(scale=1):
                        gr.HTML("""
                        <div class="workflow-card">
                            <h3>📋 Export Formats</h3>
                            <div class="feature-item">
                                <h4>🤗 HuggingFace</h4>
                                <p>Ready for transformers library</p>
                            </div>
                            <div class="feature-item">
                                <h4>📄 JSON/JSONL</h4>
                                <p>Universal format for any framework</p>
                            </div>
                            <div class="feature-item">
                                <h4>📊 CSV</h4>
                                <p>Easy analysis in Excel/Pandas</p>
                            </div>
                        </div>
                        """)
        
        # Event handlers
        def create_project(name, template):
            """Create new project"""
            if not name.strip():
                return "❌ Please enter a project name", {}
            
            project = studio.start_new_project(name.strip(), template)
            status = f"""
            ✅ **Project Created Successfully!**
            
            **Project:** {project['name']}  
            **Type:** {template.replace('_', ' ').title()}  
            **ID:** {project['id'][:8]}...  
            **Created:** {project['created_at'][:19]}
            
            👉 **Next Step:** Go to the Data Collection tab to start scraping URLs
            """
            return status, project
        
        def scrape_urls_handler(urls_text, urls_file, project, progress=gr.Progress()):
            """Handle URL scraping"""
            if not project:
                return "❌ Please create a project first", ""
            
            # Process URLs from text input or file
            urls = []
            if urls_text:
                urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
            elif urls_file:
                # Handle file upload (simplified)
                try:
                    content = urls_file.read().decode('utf-8')
                    urls = [url.strip() for url in content.split('\n') if url.strip()]
                except:
                    return "❌ Error reading uploaded file", ""
            
            if not urls:
                return "❌ No URLs provided", ""
            
            # Progress callback
            def progress_callback(pct, msg):
                progress(pct, desc=msg)
            
            # Scrape URLs
            success_count, errors = studio.scrape_urls(urls, progress_callback)
            
            if success_count > 0:
                stats_html = f"""
                <div class="stat-card">
                    <h3>✅ Scraping Complete</h3>
                    <p><strong>{success_count}</strong> items collected</p>
                    <p><strong>{len(urls) - success_count}</strong> failed</p>
                </div>
                """
                
                status = f"""
                ✅ **Scraping Complete!**
                
                **Successfully scraped:** {success_count} URLs  
                **Failed:** {len(urls) - success_count} URLs  
                
                👉 **Next Step:** Go to Data Processing tab to clean and enhance your data
                """
                
                return status, stats_html
            else:
                return f"❌ Scraping failed: {', '.join(errors)}", ""
        
        def process_data_handler(clean_text, quality_filter, detect_language, 
                               add_sentiment, extract_entities, deduplicate, project):
            """Handle data processing"""
            if not project:
                return "❌ Please create a project first", ""
            
            if not studio.scraped_items:
                return "❌ No scraped data to process. Please scrape URLs first.", ""
            
            # Configure processing options
            options = {
                'clean_text': clean_text,
                'quality_filter': quality_filter,
                'detect_language': detect_language,
                'add_sentiment': add_sentiment,
                'extract_entities': extract_entities,
                'deduplicate': deduplicate
            }
            
            # Process data
            processed_count = studio.process_data(options)
            
            if processed_count > 0:
                stats = studio.get_data_statistics()
                stats_html = f"""
                <div class="stat-card">
                    <h3>⚙️ Processing Complete</h3>
                    <p><strong>{processed_count}</strong> items processed</p>
                    <p>Avg Quality: <strong>{stats.get('avg_quality_score', 0)}</strong></p>
                    <p>Avg Words: <strong>{stats.get('avg_word_count', 0)}</strong></p>
                </div>
                """
                
                status = f"""
                ✅ **Processing Complete!**
                
                **Processed items:** {processed_count}  
                **Average quality score:** {stats.get('avg_quality_score', 0)}  
                **Average word count:** {stats.get('avg_word_count', 0)}  
                
                👉 **Next Step:** Check the Data Preview tab to review your dataset
                """
                
                return status, stats_html
            else:
                return "❌ No items passed processing filters", ""
        
        def refresh_preview_handler(project):
            """Refresh data preview"""
            if not project:
                return None, {}
            
            preview_data = studio.get_data_preview()
            stats = studio.get_data_statistics()
            
            if preview_data:
                # Convert to DataFrame format
                df_data = []
                for item in preview_data:
                    df_data.append([
                        item['title'][:50] + "..." if len(item['title']) > 50 else item['title'],
                        item['content_preview'],
                        item['word_count'],
                        item['quality_score'],
                        item['url'][:50] + "..." if len(item['url']) > 50 else item['url']
                    ])
                
                return df_data, stats
            
            return None, {}
        
        def export_dataset_handler(export_format, export_template, project):
            """Handle dataset export"""
            if not project:
                return "❌ Please create a project first", None
            
            if not studio.processed_items and not studio.scraped_items:
                return "❌ No data to export. Please scrape and process data first.", None
            
            try:
                # Export dataset
                filename = studio.export_dataset(export_template, export_format)
                
                status = f"""
                ✅ **Export Successful!**
                
                **Format:** {export_format}  
                **Template:** {export_template.replace('_', ' ').title()}  
                **File:** {filename}  
                
                📥 **Download your dataset using the link below**
                """
                
                return status, filename
                
            except Exception as e:
                return f"❌ Export failed: {str(e)}", None
        
        # Connect event handlers
        create_project_btn.click(
            fn=create_project,
            inputs=[project_name, template_choice],
            outputs=[project_status, project_state]
        )
        
        scrape_btn.click(
            fn=scrape_urls_handler,
            inputs=[urls_input, urls_file, project_state],
            outputs=[scraping_status, collection_stats]
        )
        
        process_btn.click(
            fn=process_data_handler,
            inputs=[clean_text, quality_filter, detect_language, 
                   add_sentiment, extract_entities, deduplicate, project_state],
            outputs=[processing_status, processing_stats]
        )
        
        refresh_preview_btn.click(
            fn=refresh_preview_handler,
            inputs=[project_state],
            outputs=[data_preview, dataset_stats]
        )
        
        export_btn.click(
            fn=export_dataset_handler,
            inputs=[export_format, export_template, project_state],
            outputs=[export_status, export_file]
        )
        
        # Auto-refresh preview when processing completes
        processing_status.change(
            fn=refresh_preview_handler,
            inputs=[project_state],
            outputs=[data_preview, dataset_stats]
        )
    
    return interface

# Launch the application
if __name__ == "__main__":
    logger.info("🚀 Starting AI Dataset Studio...")
    
    # Check available features
    features = []
    if HAS_TRANSFORMERS:
        features.append("✅ AI Models")
    else:
        features.append("⚠️ Basic Processing")
    
    if HAS_NLTK:
        features.append("✅ Advanced NLP")
    else:
        features.append("⚠️ Basic NLP")
    
    if HAS_DATASETS:
        features.append("✅ HuggingFace Integration")
    else:
        features.append("⚠️ Standard Export Only")
    
    logger.info(f"📊 Features: {' | '.join(features)}")
    
    try:
        interface = create_modern_interface()
        logger.info("✅ Interface created successfully")
        
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            show_error=True,
            debug=False
        )
        
    except Exception as e:
        logger.error(f"❌ Failed to launch application: {e}")
        raise