MagicMeWizard's picture
Create app.py
35f9333 verified
raw
history blame
25.6 kB
"""
AI-Powered Web Scraper - app.py
Professional-grade web content extraction and AI summarization tool for Hugging Face Spaces
"""
import gradio as gr
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
import pandas as pd
from datetime import datetime
import json
import re
import time
from typing import List, Dict, Optional, Tuple
import logging
from pathlib import Path
import os
from dataclasses import dataclass
from transformers import pipeline
import nltk
from nltk.tokenize import sent_tokenize
import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor
import hashlib
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt', quiet=True)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ScrapedContent:
"""Data class for scraped content with metadata"""
url: str
title: str
content: str
summary: str
word_count: int
reading_time: int
extracted_at: str
author: Optional[str] = None
publish_date: Optional[str] = None
meta_description: Optional[str] = None
keywords: List[str] = None
class SecurityValidator:
"""Security validation for URLs and content"""
ALLOWED_SCHEMES = {'http', 'https'}
BLOCKED_DOMAINS = {
'localhost', '127.0.0.1', '0.0.0.0',
'192.168.', '10.', '172.16.', '172.17.',
'172.18.', '172.19.', '172.20.', '172.21.',
'172.22.', '172.23.', '172.24.', '172.25.',
'172.26.', '172.27.', '172.28.', '172.29.',
'172.30.', '172.31.'
}
@classmethod
def validate_url(cls, url: str) -> Tuple[bool, str]:
"""Validate URL for security concerns"""
try:
parsed = urlparse(url)
# Check scheme
if parsed.scheme not in cls.ALLOWED_SCHEMES:
return False, f"Invalid scheme: {parsed.scheme}. Only HTTP/HTTPS allowed."
# Check for blocked domains
hostname = parsed.hostname or ''
if any(blocked in hostname for blocked in cls.BLOCKED_DOMAINS):
return False, "Access to internal/local networks is not allowed."
# Basic malformed URL check
if not parsed.netloc:
return False, "Invalid URL format."
return True, "URL is valid."
except Exception as e:
return False, f"URL validation error: {str(e)}"
class RobotsTxtChecker:
"""Check robots.txt compliance"""
@staticmethod
def can_fetch(url: str, user_agent: str = "*") -> bool:
"""Check if URL can be fetched according to robots.txt"""
try:
parsed_url = urlparse(url)
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
response = requests.get(robots_url, timeout=5)
if response.status_code == 200:
# Simple robots.txt parsing (basic implementation)
lines = response.text.split('\n')
user_agent_section = False
for line in lines:
line = line.strip()
if line.startswith('User-agent:'):
agent = line.split(':', 1)[1].strip()
user_agent_section = agent == '*' or agent.lower() == user_agent.lower()
elif user_agent_section and line.startswith('Disallow:'):
disallowed = line.split(':', 1)[1].strip()
if disallowed and url.endswith(disallowed):
return False
return True
except Exception:
# If robots.txt can't be fetched, assume allowed
return True
class ContentExtractor:
"""Advanced content extraction with multiple strategies"""
def __init__(self):
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (compatible; AI-WebScraper/1.0; Research Tool)',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
})
def extract_content(self, url: str) -> Optional[ScrapedContent]:
"""Extract content from URL with robust error handling"""
try:
# Security validation
is_valid, validation_msg = SecurityValidator.validate_url(url)
if not is_valid:
raise ValueError(f"Security validation failed: {validation_msg}")
# Check robots.txt
if not RobotsTxtChecker.can_fetch(url):
raise ValueError("robots.txt disallows scraping this URL")
# Fetch content
response = self.session.get(url, timeout=15)
response.raise_for_status()
# Parse HTML
soup = BeautifulSoup(response.content, 'html.parser')
# Extract metadata
title = self._extract_title(soup)
author = self._extract_author(soup)
publish_date = self._extract_publish_date(soup)
meta_description = self._extract_meta_description(soup)
# Extract main content
content = self._extract_main_content(soup)
if not content or len(content.strip()) < 100:
raise ValueError("Insufficient content extracted")
# Calculate metrics
word_count = len(content.split())
reading_time = max(1, word_count // 200) # Average reading speed
# Extract keywords
keywords = self._extract_keywords(content)
return ScrapedContent(
url=url,
title=title,
content=content,
summary="", # Will be filled by AI summarizer
word_count=word_count,
reading_time=reading_time,
extracted_at=datetime.now().isoformat(),
author=author,
publish_date=publish_date,
meta_description=meta_description,
keywords=keywords
)
except Exception as e:
logger.error(f"Content extraction failed for {url}: {str(e)}")
raise
def _extract_title(self, soup: BeautifulSoup) -> str:
"""Extract page title with fallbacks"""
# Try meta og:title first
og_title = soup.find('meta', property='og:title')
if og_title and og_title.get('content'):
return og_title['content'].strip()
# Try regular title tag
title_tag = soup.find('title')
if title_tag:
return title_tag.get_text().strip()
# Try h1 as fallback
h1_tag = soup.find('h1')
if h1_tag:
return h1_tag.get_text().strip()
return "No title found"
def _extract_author(self, soup: BeautifulSoup) -> Optional[str]:
"""Extract author information"""
# Try multiple selectors for author
author_selectors = [
'meta[name="author"]',
'meta[property="article:author"]',
'.author',
'.byline',
'[rel="author"]'
]
for selector in author_selectors:
element = soup.select_one(selector)
if element:
if element.name == 'meta':
return element.get('content', '').strip()
else:
return element.get_text().strip()
return None
def _extract_publish_date(self, soup: BeautifulSoup) -> Optional[str]:
"""Extract publication date"""
date_selectors = [
'meta[property="article:published_time"]',
'meta[name="publishdate"]',
'time[datetime]',
'.publish-date',
'.date'
]
for selector in date_selectors:
element = soup.select_one(selector)
if element:
if element.name == 'meta':
return element.get('content', '').strip()
elif element.name == 'time':
return element.get('datetime', '').strip()
else:
return element.get_text().strip()
return None
def _extract_meta_description(self, soup: BeautifulSoup) -> Optional[str]:
"""Extract meta description"""
meta_desc = soup.find('meta', attrs={'name': 'description'})
if meta_desc:
return meta_desc.get('content', '').strip()
og_desc = soup.find('meta', property='og:description')
if og_desc:
return og_desc.get('content', '').strip()
return None
def _extract_main_content(self, soup: BeautifulSoup) -> str:
"""Extract main content with multiple strategies"""
# Remove unwanted elements
for element in soup(['script', 'style', 'nav', 'header', 'footer',
'aside', 'advertisement', '.ads', '.sidebar']):
element.decompose()
# Try content-specific selectors first
content_selectors = [
'article',
'main',
'.content',
'.post-content',
'.entry-content',
'.article-body',
'#content',
'.story-body'
]
for selector in content_selectors:
element = soup.select_one(selector)
if element:
text = element.get_text(separator=' ', strip=True)
if len(text) > 200: # Minimum content threshold
return self._clean_text(text)
# Fallback: extract from body
body = soup.find('body')
if body:
text = body.get_text(separator=' ', strip=True)
return self._clean_text(text)
# Last resort: all text
return self._clean_text(soup.get_text(separator=' ', strip=True))
def _clean_text(self, text: str) -> str:
"""Clean extracted text"""
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove common unwanted patterns
text = re.sub(r'Subscribe.*?newsletter', '', text, flags=re.IGNORECASE)
text = re.sub(r'Click here.*?more', '', text, flags=re.IGNORECASE)
text = re.sub(r'Advertisement', '', text, flags=re.IGNORECASE)
return text.strip()
def _extract_keywords(self, content: str) -> List[str]:
"""Extract basic keywords from content"""
# Simple keyword extraction (can be enhanced with NLP)
words = re.findall(r'\b[A-Za-z]{4,}\b', content.lower())
word_freq = {}
for word in words:
if word not in ['that', 'this', 'with', 'from', 'they', 'have', 'been', 'were', 'said']:
word_freq[word] = word_freq.get(word, 0) + 1
# Return top 10 keywords
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
return [word for word, freq in sorted_words[:10]]
class AISummarizer:
"""AI-powered content summarization"""
def __init__(self):
self.summarizer = None
self._load_model()
def _load_model(self):
"""Load summarization model with error handling"""
try:
self.summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn",
tokenizer="facebook/bart-large-cnn"
)
logger.info("Summarization model loaded successfully")
except Exception as e:
logger.error(f"Failed to load summarization model: {e}")
# Fallback to a smaller model
try:
self.summarizer = pipeline(
"summarization",
model="sshleifer/distilbart-cnn-12-6"
)
logger.info("Fallback summarization model loaded")
except Exception as e2:
logger.error(f"Failed to load fallback model: {e2}")
self.summarizer = None
def summarize(self, content: str, max_length: int = 300) -> str:
"""Generate AI summary of content"""
if not self.summarizer:
return self._extractive_summary(content)
try:
# Split content into chunks if too long
max_input_length = 1024
chunks = self._split_content(content, max_input_length)
summaries = []
for chunk in chunks:
if len(chunk.split()) < 20: # Skip very short chunks
continue
result = self.summarizer(
chunk,
max_length=min(max_length, len(chunk.split()) // 2),
min_length=30,
do_sample=False
)
summaries.append(result[0]['summary_text'])
# Combine summaries
combined = ' '.join(summaries)
# If still too long, summarize again
if len(combined.split()) > max_length:
result = self.summarizer(
combined,
max_length=max_length,
min_length=50,
do_sample=False
)
return result[0]['summary_text']
return combined
except Exception as e:
logger.error(f"AI summarization failed: {e}")
return self._extractive_summary(content)
def _split_content(self, content: str, max_length: int) -> List[str]:
"""Split content into manageable chunks"""
sentences = sent_tokenize(content)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
sentence_length = len(sentence.split())
if current_length + sentence_length > max_length and current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = sentence_length
else:
current_chunk.append(sentence)
current_length += sentence_length
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def _extractive_summary(self, content: str) -> str:
"""Fallback extractive summarization"""
sentences = sent_tokenize(content)
if len(sentences) <= 3:
return content
# Simple extractive approach: take first, middle, and last sentences
summary_sentences = [
sentences[0],
sentences[len(sentences) // 2],
sentences[-1]
]
return ' '.join(summary_sentences)
class WebScraperApp:
"""Main application class"""
def __init__(self):
self.extractor = ContentExtractor()
self.summarizer = AISummarizer()
self.scraped_data = []
def process_url(self, url: str, summary_length: int = 300) -> Tuple[str, str, str, str]:
"""Process a single URL and return results"""
try:
if not url.strip():
return "❌ Error", "Please enter a valid URL", "", ""
# Add protocol if missing
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
# Extract content
with gr.update(): # Show progress
scraped_content = self.extractor.extract_content(url)
# Generate summary
summary = self.summarizer.summarize(scraped_content.content, summary_length)
scraped_content.summary = summary
# Store result
self.scraped_data.append(scraped_content)
# Format results
metadata = f"""
**πŸ“Š Content Analysis**
- **Title:** {scraped_content.title}
- **Author:** {scraped_content.author or 'Not found'}
- **Published:** {scraped_content.publish_date or 'Not found'}
- **Word Count:** {scraped_content.word_count:,}
- **Reading Time:** {scraped_content.reading_time} minutes
- **Extracted:** {scraped_content.extracted_at}
"""
keywords_text = f"**🏷️ Keywords:** {', '.join(scraped_content.keywords[:10])}" if scraped_content.keywords else ""
return (
"βœ… Success",
metadata,
f"**πŸ“ AI Summary ({len(summary.split())} words):**\n\n{summary}",
keywords_text
)
except Exception as e:
error_msg = f"Failed to process URL: {str(e)}"
logger.error(error_msg)
return "❌ Error", error_msg, "", ""
def export_data(self, format_type: str) -> str:
"""Export scraped data to file"""
if not self.scraped_data:
return "No data to export"
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if format_type == "CSV":
filename = f"scraped_data_{timestamp}.csv"
df = pd.DataFrame([
{
'URL': item.url,
'Title': item.title,
'Author': item.author,
'Published': item.publish_date,
'Word Count': item.word_count,
'Reading Time': item.reading_time,
'Summary': item.summary,
'Keywords': ', '.join(item.keywords) if item.keywords else '',
'Extracted At': item.extracted_at
}
for item in self.scraped_data
])
df.to_csv(filename, index=False)
elif format_type == "JSON":
filename = f"scraped_data_{timestamp}.json"
data = [
{
'url': item.url,
'title': item.title,
'content': item.content,
'summary': item.summary,
'metadata': {
'author': item.author,
'publish_date': item.publish_date,
'word_count': item.word_count,
'reading_time': item.reading_time,
'keywords': item.keywords,
'extracted_at': item.extracted_at
}
}
for item in self.scraped_data
]
with open(filename, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
return filename
except Exception as e:
logger.error(f"Export failed: {e}")
return f"Export failed: {str(e)}"
def clear_data(self) -> str:
"""Clear all scraped data"""
self.scraped_data.clear()
return "Data cleared successfully"
def create_interface():
"""Create the Gradio interface"""
app = WebScraperApp()
# Custom CSS for professional appearance
custom_css = """
.gradio-container {
max-width: 1200px;
margin: auto;
}
.main-header {
text-align: center;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
}
.feature-box {
background: #f8f9fa;
border: 1px solid #e9ecef;
border-radius: 8px;
padding: 1.5rem;
margin: 1rem 0;
}
.status-success {
color: #28a745;
font-weight: bold;
}
.status-error {
color: #dc3545;
font-weight: bold;
}
"""
with gr.Blocks(css=custom_css, title="AI Web Scraper") as interface:
# Header
gr.HTML("""
<div class="main-header">
<h1>πŸ€– AI-Powered Web Scraper</h1>
<p>Professional content extraction and summarization for journalists, analysts, and researchers</p>
</div>
""")
# Main interface
with gr.Row():
with gr.Column(scale=2):
# Input section
gr.HTML("<div class='feature-box'><h3>πŸ“‘ Content Extraction</h3></div>")
url_input = gr.Textbox(
label="Enter URL to scrape",
placeholder="https://example.com/article",
lines=1
)
with gr.Row():
summary_length = gr.Slider(
minimum=100,
maximum=500,
value=300,
step=50,
label="Summary Length (words)"
)
scrape_btn = gr.Button("πŸš€ Extract & Summarize", variant="primary", size="lg")
# Results section
gr.HTML("<div class='feature-box'><h3>πŸ“Š Results</h3></div>")
status_output = gr.Textbox(label="Status", lines=1, interactive=False)
metadata_output = gr.Markdown(label="Metadata")
summary_output = gr.Markdown(label="AI Summary")
keywords_output = gr.Markdown(label="Keywords")
with gr.Column(scale=1):
# Export section
gr.HTML("<div class='feature-box'><h3>πŸ’Ύ Export Options</h3></div>")
export_format = gr.Radio(
choices=["CSV", "JSON"],
label="Export Format",
value="CSV"
)
export_btn = gr.Button("πŸ“₯ Export Data", variant="secondary")
export_status = gr.Textbox(label="Export Status", lines=2, interactive=False)
gr.HTML("<div class='feature-box'><h3>🧹 Data Management</h3></div>")
clear_btn = gr.Button("πŸ—‘οΈ Clear All Data", variant="secondary")
clear_status = gr.Textbox(label="Clear Status", lines=1, interactive=False)
# Usage instructions
with gr.Accordion("πŸ“š Usage Instructions", open=False):
gr.Markdown("""
### How to Use This Tool
1. **Enter URL**: Paste the URL of the article or webpage you want to analyze
2. **Adjust Settings**: Set your preferred summary length
3. **Extract Content**: Click "Extract & Summarize" to process the content
4. **Review Results**: View the extracted metadata, AI summary, and keywords
5. **Export Data**: Save your results in CSV or JSON format
### Features
- πŸ›‘οΈ **Security**: Built-in URL validation and robots.txt compliance
- πŸ€– **AI Summarization**: Advanced BART model for intelligent summarization
- πŸ“Š **Rich Metadata**: Author, publication date, reading time, and more
- 🏷️ **Keyword Extraction**: Automatic identification of key terms
- πŸ’Ύ **Export Options**: CSV and JSON formats for further analysis
- πŸ”„ **Batch Processing**: Process multiple URLs and export all results
### Supported Content
- News articles and blog posts
- Research papers and reports
- Documentation and guides
- Most HTML-based content
### Limitations
- Respects robots.txt restrictions
- Cannot access password-protected content
- Some dynamic content may not be captured
- Processing time varies with content length
""")
# Event handlers
scrape_btn.click(
fn=app.process_url,
inputs=[url_input, summary_length],
outputs=[status_output, metadata_output, summary_output, keywords_output]
)
export_btn.click(
fn=app.export_data,
inputs=[export_format],
outputs=[export_status]
)
clear_btn.click(
fn=app.clear_data,
outputs=[clear_status]
)
return interface
# Launch the application
if __name__ == "__main__":
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)