Spaces:
Sleeping
Sleeping
File size: 2,971 Bytes
00da6c1 0a31d24 f5ee026 297ff18 00da6c1 0a31d24 fa9bd4f fb8c040 0a31d24 fa9bd4f b37f43c 052c4af fd845ad 6f88eb2 00da6c1 9cfb47a 0a31d24 f5ee026 0a31d24 5e82cd6 0a31d24 6f88eb2 6c562f3 00da6c1 052c4af 00da6c1 0b88489 3b62481 5cbb02c e20590d 00da6c1 4d372e3 00da6c1 692a571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from huggingface_hub import hf_hub_download
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
device = 'cuda' #if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
prior.enable_xformers_memory_efficient_attention()
prior = prior.to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
decoder.enable_xformers_memory_efficient_attention()
decoder.enable_model_cpu_offload()
torch.cuda.empty_cache()
def genie (Prompt, negative_prompt, height, width, scale, steps, d_steps, seed):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
torch.cuda.empty_cache()
prior_image=prior(
prompt=Prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
guidance_scale=scale,
num_images_per_prompt=1,
num_inference_steps=steps)
image=decoder(
image_embeddings=prior_image.image_embeddings.to(torch.float16),
prompt=Prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=d_steps).images[0]
return image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1280, 1024, step=128, label='Height'),
gr.Slider(512, 1280, 1024, step=128, label='Width'),
gr.Slider(.5, maximum=10, value=3, step=.25, label='Guidance Scale'),
gr.Slider(10, maximum=40, value=20, step=5, label='Number of Prior Iterations'),
gr.Slider(5, maximum=20, value=10, step=5, label="Number of Decoder Iterations"),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
outputs=gr.Image(label='Generated Image'),
title="Manju Dream Booth V2.2 with Stable-Cascade - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True) |