File size: 2,455 Bytes
00da6c1
 
 
 
 
 
dc36151
f5ee026
297ff18
00da6c1
 
158d747
dc36151
 
 
fd845ad
6f88eb2
00da6c1
9cfb47a
dc36151
0a31d24
 
f5ee026
0a31d24
 
 
dc36151
6c562f3
00da6c1
052c4af
00da6c1
15eacc9
 
3b62481
 
5cbb02c
e20590d
00da6c1
4d372e3
00da6c1
692a571
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from huggingface_hub import hf_hub_download
from diffusers import StableDiffusion3Pipeline

device = 'cuda' #if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
SD3 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
SD3.enable_xformers_memory_efficient_attention()
SD3 = SD3.to(device)

                    
def genie (Prompt, negative_prompt, height, width, scale, steps, d_steps, seed):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
    torch.cuda.empty_cache()
    image=SD3(
    prompt=Prompt,
    height=height,
    width=width,
    negative_prompt=negative_prompt,
    guidance_scale=scale,
    num_images_per_prompt=1,
    num_inference_steps=steps).images[0]
    return image
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1536, 1024, step=128, label='Height'),
                               gr.Slider(512, 1536, 1024, step=128, label='Width'),
                               gr.Slider(.5, maximum=10, value=3, step=.25, label='Guidance Scale'), 
                               gr.Slider(10, maximum=40, value=20, step=5, label='Number of Prior Iterations'), 
                               gr.Slider(5, maximum=20, value=10, step=5, label="Number of Decoder Iterations"),
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
             outputs=gr.Image(label='Generated Image'), 
             title="Manju Dream Booth V2.2 with Stable-Cascade - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True)