File size: 1,795 Bytes
2327692
a094510
0759a7f
daebcf8
de9f399
2327692
a094510
 
 
 
 
80d6d93
2327692
a094510
 
de9f399
 
 
daebcf8
f5d0beb
daebcf8
 
 
6203c8d
a094510
daebcf8
a094510
6203c8d
a094510
f5d0beb
a094510
 
 
 
2327692
 
 
 
a094510
2327692
a094510
 
2327692
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
import torch 
import torchaudio
import soundfile as sf

# Load Whisper model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")

# Load the Hugging Face emotion classifier
emotion_classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)

# Define a function to process audio and analyze emotions
def transcribe_and_analyze(audio_path):
    # Load audio from the provided file
    audio, sample_rate = sf.read(audio_path)
    
    # Resample audio to 16000 Hz if necessary
    print('resample')
    if sample_rate != 16000:
        audio_tensor = torchaudio.functional.resample(torch.tensor(audio), orig_freq=sample_rate, new_freq=16000)
        audio = audio_tensor.numpy()  # Convert back to numpy array
    
    # Process audio with Whisper
    input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
    predicted_ids = model.generate(input_features)
    print('trans')
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
    print(transcription)

    # Analyze emotions in the transcription
    emotions = emotion_classifier(transcription)
    return transcription, emotions

# Create Gradio interface
interface = gr.Interface(
    fn=transcribe_and_analyze,
    inputs=gr.Audio(type="filepath"),  # Accept audio input
    outputs=[
        gr.Textbox(label="Transcription"),  # Display transcription
        gr.JSON(label="Emotion Analysis")  # Display emotion analysis
    ],
    title="Audio to Emotion Analysis"
)

# Launch the Gradio app
interface.launch()